667 research outputs found

    First-Class Nonstandard Interpretations by Opening Closures

    Get PDF
    We motivate and discuss a novel functional programming construct that allows convenient modular run-time nonstandard interpretation via reflection on closure environments. This map-closure construct encompasses both the ability to examine the contents of a closure environment and to construct a new closure with a modified environment. From the user’s perspective, map-closure is a powerful and useful construct that supports such tasks as tracing, security logging, sandboxing, error checking, profiling, code instrumentation and metering, run-time code patching, and resource monitoring. From the implementor’s perspective, map-closure is analogous to call/cc. Just as call/cc is a non-referentiallytransparent mechanism that reifies the continuations that are only implicit in programs written in direct style, map-closure is a nonreferentially- transparent mechanism that reifies the closure environments that are only implicit in higher-order programs. Just as CPS conversion is a non-local but purely syntactic transformation that can eliminate references to call/cc, closure conversion is a non-local but purely syntactic transformation that can eliminate references to map-closure. We show how the combination of map-closure and call/cc can be used to implement set! as a procedure definition and a local macro transformation

    Assimilation of stratospheric and mesospheric temperatures from MLS and SABER into a global NWP model

    No full text
    International audienceThe forecast model and three-dimensional variational data assimilation components of the Navy Operational Global Atmospheric Prediction System (NOGAPS) have each been extended into the upper stratosphere and mesosphere to form an Advanced Level Physics High Altitude (ALPHA) version of NOGAPS extending to ~100 km. This NOGAPS-ALPHA NWP prototype is used to assimilate stratospheric and mesospheric temperature data from the Microwave Limb Sounder (MLS) and the Sounding of the Atmosphere using Broadband Radiometry (SABER) instruments. A 60-day analysis period in January and February, 2006, was chosen that includes a well documented stratospheric sudden warming. SABER temperatures indicate that the SSW caused the polar winter stratopause at ~40 km to disappear, then reform at ~80 km altitude and slowly descend during February. The NOGAPS-ALPHA analysis reproduces this observed stratospheric and mesospheric temperature structure, as well as realistic evolution of zonal winds, residual velocities, and Eliassen-Palm fluxes that aid interpretation of the vertically deep circulation and eddy flux anomalies that developed in response to this wave-breaking event. The observation minus forecast (O-F) standard deviations for MLS and SABER are ~2 K in the mid-stratosphere and increase monotonically to about 6 K in the upper mesosphere. Increasing O-F standard deviations in the mesosphere are expected due to increasing instrument error and increasing geophysical variance at small spatial scales in the forecast model. In the mid/high latitude winter regions, 10-day forecast skill is improved throughout the upper stratosphere and mesosphere when the model is initialized using the high-altitude analysis based on assimilation of both SABER and MLS data

    GAMMA GLOBULIN AND ANTIBODY FORMATION IN VITRO

    Full text link

    Search for extended gamma-ray emission from the Virgo galaxy cluster with Fermi-LAT

    Get PDF
    Galaxy clusters are one of the prime sites to search for dark matter (DM) annihilation signals. Depending on the substructure of the DM halo of a galaxy cluster and the cross sections for DM annihilation channels, these signals might be detectable by the latest generation of γ\gamma-ray telescopes. Here we use three years of Fermi Large Area Telescope (LAT) data, which are the most suitable for searching for very extended emission in the vicinity of nearby Virgo galaxy cluster. Our analysis reveals statistically significant extended emission which can be well characterized by a uniformly emitting disk profile with a radius of 3\deg that moreover is offset from the cluster center. We demonstrate that the significance of this extended emission strongly depends on the adopted interstellar emission model (IEM) and is most likely an artifact of our incomplete description of the IEM in this region. We also search for and find new point source candidates in the region. We then derive conservative upper limits on the velocity-averaged DM pair annihilation cross section from Virgo. We take into account the potential γ\gamma-ray flux enhancement due to DM sub-halos and its complex morphology as a merging cluster. For DM annihilating into bb‾b\overline{b}, assuming a conservative sub-halo model setup, we find limits that are between 1 and 1.5 orders of magnitude above the expectation from the thermal cross section for mDM≲100 GeVm_{\mathrm{DM}}\lesssim100\,\mathrm{GeV}. In a more optimistic scenario, we exclude ⟨σv⟩∼3×10−26 cm3 s−1\langle \sigma v \rangle\sim3\times10^{-26}\,\mathrm{cm^{3}\,s^{-1}} for mDM≲40 GeVm_{\mathrm{DM}}\lesssim40\,\mathrm{GeV} for the same channel. Finally, we derive upper limits on the γ\gamma-ray-flux produced by hadronic cosmic-ray interactions in the inter cluster medium. We find that the volume-averaged cosmic-ray-to-thermal pressure ratio is less than ∼6%\sim6\%.Comment: 15 pages, 11 figures, 4 tables, accepted for publication in ApJ; corresponding authors: T. Jogler, S. Zimmer & A. Pinzk
    • …
    corecore