259 research outputs found
Impact of using different ozone cross sections on ozone profile retrievals from Global Ozone Monitoring Experiment (GOME) ultraviolet measurements
We investigate the effect of using three different cross section data sets on ozone profile retrievals from Global Ozone Monitoring Experiment (GOME) ultraviolet measurements (289&ndash;307 nm, 326&ndash;337 nm). These include Bass-Paur, Brion, and GOME flight model cross sections (references below). Using different cross sections can significantly affect the retrievals, by up to 12 Dobson Units (DU, 1 DU=2.69&times;10<sup>16</sup> molecules cm<sup>&minus;2</sup>) in total column ozone, up to 10 DU in tropospheric column ozone, and up to 100% in retrieved ozone values for individual atmospheric layers. Compared to using the Bass-Paur and GOME flight model cross sections, using the Brion cross sections not only reduces fitting residuals by 15&ndash;60% in the Huggins bands, but also improves retrievals, especially in the troposphere, as seen from validation against ozonesonde measurements. Therefore, we recommend using the Brion cross section for ozone profile retrievals from ultraviolet measurements. The total column ozone retrieved using the GOME flight model cross sections is systematically lower, by 7&ndash;10 DU, than that retrieved using the Brion and Bass-Paur cross sections and is also systematically lower than Total Ozone Mapping Spectrometer (TOMS) observations. This study demonstrates the need for improved ozone cross section measurements in the ultraviolet to improve profile retrievals of this key atmospheric constituent
The impact of the Kasatochi eruption on the Moon's illumination during the August 2008 lunar eclipse
The Moon's changeable aspect during a lunar eclipse is largely attributable
to variations in the refracted unscattered sunlight absorbed by the terrestrial
atmosphere that occur as the satellite crosses the Earth's shadow. The
contribution to the Moon's aspect from sunlight scattered at the Earth's
terminator is generally deemed minor. However, our analysis of a published
spectrum of the 16 August 2008 lunar eclipse shows that diffuse sunlight is a
major component of the measured spectrum at wavelengths shorter than 600 nm.
The conclusion is supported by two distinct features, namely the spectrum's
tail at short wavelengths and the unequal absorption by an oxygen collisional
complex at two nearby bands. Our findings are consistent with the presence of
the volcanic cloud reported at high northern latitudes following the 7-8 August
2008 eruption in Alaska of the Kasatochi volcano. The cloud both attenuates the
unscattered sunlight and enhances moderately the scattered component, thus
modifying the contrast between the two contributions.Comment: Accepted for publication in Geophysical Research Letter
Water Vapour Variability in the High-Latitude Upper Troposphere- Part 2: Impact of Volcanic Eruptions
The impact of volcanic eruptions on water vapour in the high-latitude upper troposphere is studied using deseasonalized time series based on observations by the Atmospheric Chemistry Experiment (ACE) water vapour sensors, namely MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) and the Fourier Transform Spectrometer (ACE-FTS). The two eruptions with the greatest impact on the high-latitude upper troposphere during the time frame of this satellitebased remote sensing mission are chosen. The Puyehue-Cordón Caulle volcanic eruption in June 2011 was the most explosive in the past 24 years and is shown to be able to account for the observed (50 ± 12)% increase in water vapour in the southern high-latitude upper troposphere in July 2011 after a minor adjustment for the simultaneous influence of the Antarctic oscillation. Eyjafjallajökull erupted in the spring of 2010, increasing water vapour in the upper troposphere at northern high latitudes significantly for a period of similar to 1 month. These findings imply that extratropical volcanic eruptions in windy environments can lead to significant perturbations to high-latitude upper tropospheric humidity mostly due to entrainment of lower tropospheric moisture by windblown plumes. The Puyehue-Cordón Caulle eruption must be taken into account to properly determine the magnitude of the trend in southern high-latitude upper tropospheric water vapour over the last decade
Early and midterm results of frozen elephant trunk operation with Evita open stent-graft in patients with Marfan syndrome: results of a multicentre study
Background: Endovascular treatment of patients with Marfan syndrome (MFS) is not recommended. Hybrid procedures such as frozen elephant trunk (FET), which combines stent-graft deployment with an integrated non-stented fabric graft for proximal grafting and suturing, have not been previously evaluated. The aim of this study was to assess the safety and feasibility of FET operation in patients with MFS. Methods: Patients enrolled in the International E-vita Open Registry (IEOR) who underwent FET procedure between January 2001 and February 2020 meeting Ghent criteria for MFS were included in the study. Early and midterm results were retrospectively analyzed. Preoperative, postoperative and follow-up computed tomography angiography scans were analysed. Results: We analyzed 37 patients [mean age 38 ± 11 years, 65% men]. Acute or chronic aortic dissection was present in 35 (95%) patients (14 and 21 patients respectively). Two (5%) patients had an aneurysm without dissection. Malperfusion syndrome was present in 4 patients. Twenty-nine (78%) patients had history of aortic surgical interventions. The 30-day and in-hospital mortality amounted to 8 and 14% respectively. False lumen exclusion was present in 73% in stented segment in last postoperative CT. The overall 5-year survival was 71% and freedom from reintervention downstream was 58% at 5 years. Of the nine patients who required reintervention for distal aortic disease, one patient died. Conclusions: FET operation for patients with MFS can be performed with acceptable mortality and morbidity. In long-term follow-up no reinterventions on the aortic arch were required. FET allows for easier second stage operations providing platform for surgical and endovascular reinterventions
Retrieval of Carbon Dioxide Vertical Profiles From Solar Occultation Observations and Associated Error Budgets for ACE-FTS and CASS-FTS
An algorithm is developed to retrieve the vertical profile of carbon dioxide in the 5 to 25 km altitude range using mid-infrared solar occultation spectra from the main instrument of the ACE (Atmospheric Chemistry Experiment) mission, namely the Fourier transform spectrometer (FTS). The main challenge is to find an atmospheric phenomenon which can be used for accurate tangent height determination in the lower atmosphere, where the tangent heights (THs) calculated from geometric and timing information are not of sufficient accuracy. Error budgets for the retrieval of CO2 from ACE-FTS and the FTS on a potential follow-on mission named CASS (Chemical and Aerosol Sounding Satellite) are calculated and contrasted. Retrieved THs have typical biases of 60m relative to those retrieved using the ACE version 3. x software after revisiting the temperature dependence of the N2 CIA (collision-induced absorption) laboratory measurements and accounting for sulfate aerosol extinction. After correcting for the known residual high bias of ACE version 3. x THs expected from CO2 spectroscopic/isotopic inconsistencies, the remaining bias for tangent heights determined with the N2 CIA is -20 m. CO2 in the 5-13 km range in the 2009-2011 time frame is validated against aircraft measurements from CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container), CONTRAIL (Comprehensive Observation Network for Trace gases by Airline), and HIPPO HIAPER Pole-to-Pole Observations), yielding typical biases of -1.7 ppm in the 5-13 km range. The standard error of these biases in this vertical range is 0.4 ppm. The multiyear ACE-FTS data set is valuable in determining the seasonal variation of the latitudinal gradient which arises from the strong seasonal cycle in the Northern Hemisphere troposphere. The annual growth of CO2 in this time frame is determined to be 2.6±0.4 ppm year-1, in agreement with the currently accepted global growth rate based on ground-based measurements
Effect of volcanic aerosol on stratospheric NOâ‚‚ and Nâ‚‚Oâ‚… from 2002-2014 as measured by Odin-OSIRIS and Envisat-MIPAS
Following the large volcanic eruptions of Pinatubo in 1991 and El Chichón in 1982, decreases in stratospheric NO₂ associated with enhanced aerosol were observed. The Optical Spectrograph and Infrared Imaging Spectrometer (OSIRIS) measured the widespread enhancements of stratospheric aerosol following seven volcanic eruptions between 2002 and 2014, although the magnitudes of these eruptions were all much smaller than the Pinatubo and El Chichón eruptions. In order to isolate and quantify the relationship between volcanic aerosol and NO₂, NO₂ anomalies were calculated using measurements from OSIRIS and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). In the tropics, variability due to the quasi-biennial oscillation was subtracted from the time series. OSIRIS profile measurements indicate that the strongest anticorrelations between NO₂ and volcanic aerosol extinction were for the 5 km layer starting  ∼  3 km above the climatological mean tropopause at the given latitude. OSIRIS stratospheric NO₂ partial columns in this layer were found to be smaller than background NO₂ levels during these aerosol enhancements by up to  ∼  60 % with typical Pearson correlation coefficients of R ∼ −0. 7. MIPAS also observed decreases in NO₂ partial columns during periods affected by volcanic aerosol, with percent differences of up to  ∼  25 % relative to background levels. An even stronger anticorrelation was observed between OSIRIS aerosol optical depth and MIPAS N₂O₅ partial columns, with R ∼ −0. 9, although no link with MIPAS HNO3 was observed. The variation in OSIRIS NO₂ with increasing aerosol was found to be consistent with simulations from a photochemical box model within the estimated model uncertainty
New Measurements of the Motion of the Zodiacal Dust
Using the Wisconsin H-Alpha Mapper (WHAM), we have measured at high spectral
resolution and high signal-to-noise the profile of the scattered solar Mg I
5184 absorption line in the zodiacal light. The observations were carried out
toward 49 directions that sampled the ecliptic equator from solar elongations
of 48\dg (evening sky) to 334\dg (morning sky) plus observations near +47\dg
and +90\dg ecliptic latitude. The spectra show a clear prograde kinematic
signature that is inconsistent with dust confined to the ecliptic plane and in
circular orbits influenced only by the sun's gravity. In particular, the
broadened widths of the profiles, together with large amplitude variations in
the centroid velocity with elongation angle, indicate that a significant
population of dust is on eccentric orbits. In addition, the wide, flat-bottomed
line profile toward the ecliptic pole indicates a broad distribution of orbital
inclinations extending up to about 30\dg - 40\dg with respect to the ecliptic
plane. The absence of pronounced asymmetries in the shape of the profiles
limits the retrograde population to less than 10% of the prograde population
and also places constraints on the scattering phase function of the particles.
These results do not show the radial outflow or evening--morning velocity
amplitude asymmetry reported in some earlier investigations. The reduction of
the spectra included the discovery and removal of extremely faint, unidentified
terrestrial emission lines that contaminate and distort the underlying Mg I
profile. This atmospheric emission is too weak to have been seen in earlier,
lower signal-to-noise observations, but it probably affected the line centroid
measurements of previous investigations.Comment: 24 pages, 8 figures, 1 table, to appear in ApJ v612; figures appear
low-res only on scree
- …