290 research outputs found

    Selective phosphodiesterase-5 inhibition reduces neointimal hyperplasia in rat carotid arteries after surgical endarterectomy.

    Get PDF
    OBJECTIVE: Long-term results of surgical vessel reconstruction are compromised by restenosis caused by neointimal hyperplasia. Recent studies suggest that reduced cyclic guanosine monophosphate signaling is associated with neointima formation. In a rat model of endarterectomy, we investigated the effect of pharmacologic inhibition of cyclic guanosine monophosphate degradation on neointima formation by using the selective phosphodiesterase-5 inhibitor vardenafil. METHODS: Carotid endarterectomy was performed in male Sprague-Dawley rats by means of incision of the right common carotid artery with removal of intima. Four groups were studied: unoperated control rats (n = 4), sham-operated rats (n = 9), control rats with endarterectomy (n = 9), or endarterectomized rats treated with vardenafil (10 mg/kg/day) postoperatively (n = 9). After 3 weeks, vessel compartment areas were measured by means of conventional microscopy with hematoxylin and eosin staining. Immunohistochemical analysis was performed to confirm neointima formation and the local cyclic guanosine monophosphate content. Plasma levels of cyclic guanosine monophosphate were determined by means of enzyme immunoassay. Student's t test was used for statistical evaluation. RESULTS: Immunohistochemical analysis demonstrated intensive staining for transforming growth factor beta1 and alpha-smooth muscle actin in the control neointima. Vardenafil significantly reduced the stenosis grade (24.64% +/- 7.46% vs 54.12% +/- 10.30% in the control group, P < .05) and expression of transforming growth factor beta1, as well as alpha-smooth muscle actin, in the neointima. The immunohistochemical score for cyclic guanosine monophosphate was higher in the treated neointima (4.80 +/- 0.76 vs 2.84 +/- 0.40 in the control group, P < .05), and increased plasma cyclic guanosine monophosphate levels were found by means of enzyme immunoassay as well (84.65 +/- 12.77 pmol/mL vs 43.50 +/- 3.30 pmol/mL in the control group, P < .05). CONCLUSIONS: Treatment with vardenafil can be considered a new possibility to prevent neointimal hyperplasia after endarterectomy

    Effect of interleukin-1 beta inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial

    Get PDF
    Inflammation in the tumour microenvironment mediated by interleukin 1β is hypothesised to have a major role in cancer invasiveness, progression, and metastases. We did an additional analysis in the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS), a randomised trial of the role of interleukin-1β inhibition in atherosclerosis, with the aim of establishing whether inhibition of a major product of the Nod-like receptor protein 3 (NLRP3) inflammasome with canakinumab might alter cancer incidence.We did a randomised, double-blind, placebo-controlled trial of canakinumab in 10 061 patients with atherosclerosis who had had a myocardial infarction, were free of previously diagnosed cancer, and had concentrations of high-sensitivity C-reactive protein (hsCRP) of 2 mg/L or greater. To assess dose-response effects, patients were randomly assigned by computer-generated codes to three canakinumab doses (50 mg, 150 mg, and 300 mg, subcutaneously every 3 months) or placebo. Participants were followed up for incident cancer diagnoses, which were adjudicated by an oncology endpoint committee masked to drug or dose allocation. Analysis was by intention to treat. The trial is registered with ClinicalTrials.gov, NCT01327846. The trial is closed (the last patient visit was in June, 2017).Baseline concentrations of hsCRP (median 6·0 mg/L vs 4·2 mg/L; p<0·0001) and interleukin 6 (3·2 vs 2·6 ng/L; p<0·0001) were significantly higher among participants subsequently diagnosed with lung cancer than among those not diagnosed with cancer. During median follow-up of 3·7 years, compared with placebo, canakinumab was associated with dose-dependent reductions in concentrations of hsCRP of 26-41% and of interleukin 6 of 25-43% (p<0·0001 for all comparisons). Total cancer mortality (n=196) was significantly lower in the pooled canakinumab group than in the placebo group (p=0·0007 for trend across groups), but was significantly lower than placebo only in the 300 mg group individually (hazard ratio [HR] 0·49 [95% CI 0·31-0·75]; p=0·0009). Incident lung cancer (n=129) was significantly less frequent in the 150 mg (HR 0·61 [95% CI 0·39-0·97]; p=0·034) and 300 mg groups (HR 0·33 [95% CI 0·18-0·59]; p<0·0001; p<0·0001 for trend across groups). Lung cancer mortality was significantly less common in the canakinumab 300 mg group than in the placebo group (HR 0·23 [95% CI 0·10-0·54]; p=0·0002) and in the pooled canakinumab population than in the placebo group (p=0·0002 for trend across groups). Fatal infections or sepsis were significantly more common in the canakinumab groups than in the placebo group. All-cause mortality did not differ significantly between the canakinumab and placebo groups (HR 0·94 [95% CI 0·83-1·06]; p=0·31).Our hypothesis-generating data suggest the possibility that anti-inflammatory therapy with canakinumab targeting the interleukin-1β innate immunity pathway could significantly reduce incident lung cancer and lung cancer mortality. Replication of these data in formal settings of cancer screening and treatment is required.Novartis Pharmaceuticals

    Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial

    Get PDF
    Canakinumab, a monoclonal antibody targeting interleukin-1β, reduces inflammation and cardiovascular event rates with no effect on lipid concentrations. However, it is uncertain which patient groups benefit the most from treatment and whether reductions in the inflammatory biomarker high-sensitivity C-reactive protein (hsCRP) correlate with clinical benefits for individual patients.The Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS) used computer-generated codes to randomly allocate 10 061 men and women with a history of myocardial infarction to placebo or one of three doses of canakinumab (50 mg, 150 mg, or 300 mg) given subcutaneously once every 3 months. In a prespecified secondary analysis designed to address the relationship of hsCRP reduction to event reduction in CANTOS, we evaluated the effects of canakinumab on rates of major adverse cardiovascular events, cardiovascular mortality, and all-cause mortality according to on-treatment concentrations of hsCRP. We used multivariable modelling to adjust for baseline factors associated with achieved hsCRP and multiple sensitivity analyses to address the magnitude of residual confounding. The median follow-up was 3·7 years. The trial is registered with ClinicalTrials.gov, number NCT01327846.Baseline clinical characteristics did not define patient groups with greater or lesser cardiovascular benefits when treated with canakinumab. However, trial participants allocated to canakinumab who achieved hsCRP concentrations less than 2 mg/L had a 25% reduction in major adverse cardiovascular events (multivariable adjusted hazard ratio [HRadj]=0·75, 95% CI 0·66-0·85, p<0·0001), whereas no significant benefit was observed among those with on-treatment hsCRP concentrations of 2 mg/L or above (HRadj=0·90, 0·79-1·02, p=0·11). For those treated with canakinumab who achieved on-treatment hsCRP concentrations less than 2 mg/L, cardiovascular mortality (HRadj=0·69, 95% CI 0·56-0·85, p=0·0004) and all-cause mortality (HRadj=0·69, 0·58-0·81, p<0·0001) were both reduced by 31%, whereas no significant reduction in these endpoints was observed among those treated with canakinumab who achieved hsCRP concentrations of 2 mg/L or above. Similar differential effects were found in analyses of the trial prespecified secondary cardiovascular endpoint (which additionally included hospitalisation for unstable angina requiring unplanned revascularisation) and in sensitivity analyses alternatively based on median reductions in hsCRP, on 50% or greater reductions in hsCRP, on the median percent reduction in hsCRP, in dose-specific analyses, and in analyses using a causal inference approach to estimate the effect of treatment among individuals who would achieve a targeted hsCRP concentration.The magnitude of hsCRP reduction following a single dose of canakinumab might provide a simple clinical method to identify individuals most likely to accrue the largest benefit from continued treatment. These data further suggest that lower is better for inflammation reduction with canakinumab.Novartis Pharmaceuticals

    Histopathological evaluation of thrombus in patients presenting with stent thrombosis. A multicenter European study: a report of the prevention of late stent thrombosis by an interdisciplinary global European effort consortium

    Get PDF
    Background Stent thrombosis (ST) is a rare but serious complication following percutaneous coronary intervention. Analysis of thrombus composition from patients undergoing catheter thrombectomy may provide important insights into the pathological processes leading to thrombus formation. We performed a large-scale multicentre study to evaluate thrombus specimens in patients with ST across Europe. Methods Patients presenting with ST and undergoing thrombus aspiration were eligible for inclusion. Thrombus collection was performed according to a standardized protocol and specimens were analysed histologically at a core laboratory. Serial tissue cross sections were stained with haematoxylin–eosin (H&E), Carstairs and Luna. Immunohistochemistry was performed to identify leukocyte subsets, prothrombotic neutrophil extracellular traps (NETs), erythrocytes, platelets, and fibrinogen. Results Overall 253 thrombus specimens were analysed; 79 (31.2%) from patients presenting with early ST, 174 (68.8%) from late ST; 79 (31.2%) were from bare metal stents, 166 (65.6%) from drug-eluting stents, 8 (3.2%) were from stents of unknown type. Thrombus specimens displayed heterogeneous morphology with platelet-rich thrombus and fibrin/fibrinogen fragments most abundant; mean platelet coverage was 57% of thrombus area. Leukocyte infiltrations were hallmarks of both early and late ST (early: 2260 ± 1550 per mm2 vs. late: 2485 ± 1778 per mm2; P = 0.44); neutrophils represented the most prominent subset (early: 1364 ± 923 per mm2 vs. late: 1428 ± 1023 per mm2; P = 0.81). Leukocyte counts were significantly higher compared with a control group of patients with thrombus aspiration in spontaneous myocardial infarction. Neutrophil extracellular traps were observed in 23% of samples. Eosinophils were present in all stent types, with higher numbers in patients with late ST in sirolimus-and everolimus-eluting stents. Conclusion In a large-scale study of histological thrombus analysis from patients presenting with ST, thrombus specimens displayed heterogeneous morphology. Recruitment of leukocytes, particularly neutrophils, appears to be a hallmark of ST. The presence of NETs supports their pathophysiological relevance. Eosinophil recruitment suggests an allergic component to the process of ST

    Allosteric “beta-blocker” isolated from a DNA-encoded small molecule library

    Get PDF
    The present study reports the discovery of a small-molecule negative allosteric modulator for the β2-adrenergic receptor (β2AR) via in vitro affinity-based iterative selection of highly diverse DNA-encoded small-molecule libraries. Characterization of the compound demonstrates its selectivity for the β2AR and that it negatively modulates a wide range of receptor functions. More importantly, our findings establish a generally applicable, proof-of-concept strategy for screening DNA-encoded small-molecule libraries against purified G-protein–coupled receptors (GPCRs), which holds great potential for discovering therapeutic molecules

    Magnetic Resonance Imaging of Bone Marrow Cell-Mediated Interleukin-10 Gene Therapy of Atherosclerosis

    Get PDF
    A characteristic feature of atherosclerosis is its diffuse involvement of arteries across the entire human body. Bone marrow cells (BMC) can be simultaneously transferred with therapeutic genes and magnetic resonance (MR) contrast agents prior to their transplantation. Via systemic transplantation, these dual-transferred BMCs can circulate through the entire body and thus function as vehicles to carry genes/contrast agents to multiple atherosclerosis. This study was to evaluate the feasibility of using in vivo MR imaging (MRI) to monitor BMC-mediated interleukin-10 (IL-10) gene therapy of atherosclerosis.For in vitro confirmation, donor mouse BMCs were transduced by IL-10/lentivirus, and then labeled with a T2-MR contrast agent (Feridex). For in vivo validation, atherosclerotic apoE(-/-) mice were intravenously transplanted with IL-10/Feridex-BMCs (Group I, n = 5) and Feridex-BMCs (Group II, n = 5), compared to controls without BMC transplantation (Group III, n = 5). The cell migration to aortic atherosclerotic lesions was monitored in vivo using 3.0T MRI with subsequent histology correlation. To evaluate the therapeutic effect of BMC-mediated IL-10 gene therapy, we statistically compared the normalized wall indexes (NWI) of ascending aortas amongst different mouse groups with various treatments.Of in vitro experiments, simultaneous IL-10 transduction and Feridex labeling of BMCs were successfully achieved, with high cell viability and cell labeling efficiency, as well as IL-10 expression efficiency (≥90%). Of in vivo experiments, MRI of animal groups I and II showed signal voids within the aortic walls due to Feridex-created artifacts from the migrated BMCs in the atherosclerotic plaques, which were confirmed by histology. Histological quantification showed that the mean NWI of group I was significantly lower than those of group II and group III (P<0.05).This study has confirmed the possibility of using MRI to track, in vivo, IL-10/Feridex-BMCs recruited to atherosclerotic lesions, where IL-10 genes function to prevent the progression of atherosclerosis

    Effect of Alirocumab on Lipoprotein(a) and Cardiovascular Risk After Acute Coronary Syndrome

    Get PDF
    Background: Lipoprotein(a) concentration is associated with cardiovascular events. Alirocumab, a proprotein convertase subtilisin/kexin type 9 inhibitor, lowers lipoprotein(a) and low-density lipoprotein cholesterol (LDL-C). Objectives: A pre-specified analysis of the placebo-controlled ODYSSEY Outcomes trial in patients with recent acute coronary syndrome (ACS) determined whether alirocumab-induced changes in lipoprotein(a) and LDL-C independently predicted major adverse cardiovascular events (MACE). Methods: One to 12 months after ACS, 18,924 patients on high-intensity statin therapy were randomized to alirocumab or placebo and followed for 2.8 years (median). Lipoprotein(a) was measured at randomization and 4 and 12 months thereafter. The primary MACE outcome was coronary heart disease death, nonfatal myocardial infarction, ischemic stroke, or hospitalization for unstable angina. Results: Baseline lipoprotein(a) levels (median: 21.2 mg/dl; interquartile range [IQR]: 6.7 to 59.6 mg/dl) and LDL-C [corrected for cholesterol content in lipoprotein(a)] predicted MACE. Alirocumab reduced lipoprotein(a) by 5.0 mg/dl (IQR: 0 to 13.5 mg/dl), corrected LDL-C by 51.1 mg/dl (IQR: 33.7 to 67.2 mg/dl), and reduced the risk of MACE (hazard ratio [HR]: 0.85; 95% confidence interval [CI]: 0.78 to 0.93). Alirocumab-induced reductions of lipoprotein(a) and corrected LDL-C independently predicted lower risk of MACE, after adjustment for baseline concentrations of both lipoproteins and demographic and clinical characteristics. A 1-mg/dl reduction in lipoprotein(a) with alirocumab was associated with a HR of 0.994 (95% CI: 0.990 to 0.999; p = 0.0081). Conclusions: Baseline lipoprotein(a) and corrected LDL-C levels and their reductions by alirocumab predicted the risk of MACE after recent ACS. Lipoprotein(a) lowering by alirocumab is an independent contributor to MACE reduction, which suggests that lipoprotein(a) should be an independent treatment target after ACS. (ODYSSEY Outcomes: Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab; NCT01663402)

    Effect of Alirocumab on Lipoprotein(a) and Cardiovascular Risk After Acute Coronary Syndrome

    Get PDF
    Lipoprotein(a) concentration is associated with cardiovascular events. Alirocumab, a proprotein convertase subtilisin/kexin type 9 inhibitor, lowers lipoprotein(a) and low-density lipoprotein cholesterol (LDL-C). A pre-specified analysis of the placebo-controlled ODYSSEY Outcomes trial in patients with recent acute coronary syndrome (ACS) determined whether alirocumab-induced changes in lipoprotein(a) and LDL-C independently predicted major adverse cardiovascular events (MACE). One to 12 months after ACS, 18,924 patients on high-intensity statin therapy were randomized to alirocumab or placebo and followed for 2.8 years (median). Lipoprotein(a) was measured at randomization and 4 and 12 months thereafter. The primary MACE outcome was coronary heart disease death, nonfatal myocardial infarction, ischemic stroke, or hospitalization for unstable angina. Baseline lipoprotein(a) levels (median: 21.2 mg/dl; interquartile range [IQR]: 6.7 to 59.6 mg/dl) and LDL-C [corrected for cholesterol content in lipoprotein(a)] predicted MACE. Alirocumab reduced lipoprotein(a) by 5.0 mg/dl (IQR: 0 to 13.5 mg/dl), corrected LDL-C by 51.1 mg/dl (IQR: 33.7 to 67.2 mg/dl), and reduced the risk of MACE (hazard ratio [HR]: 0.85; 95% confidence interval [CI]: 0.78 to 0.93). Alirocumab-induced reductions of lipoprotein(a) and corrected LDL-C independently predicted lower risk of MACE, after adjustment for baseline concentrations of both lipoproteins and demographic and clinical characteristics. A 1-mg/dl reduction in lipoprotein(a) with alirocumab was associated with a HR of 0.994 (95% CI: 0.990 to 0.999; p = 0.0081). Baseline lipoprotein(a) and corrected LDL-C levels and their reductions by alirocumab predicted the risk of MACE after recent ACS. Lipoprotein(a) lowering by alirocumab is an independent contributor to MACE reduction, which suggests that lipoprotein(a) should be an independent treatment target after ACS. (ODYSSEY Outcomes: Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab; NCT01663402
    corecore