3,188 research outputs found

    High-precision force sensing using a single trapped ion

    Full text link
    We introduce quantum sensing schemes for measuring very weak forces with a single trapped ion. They use the spin-motional coupling induced by the laser-ion interaction to transfer the relevant force information to the spin-degree of freedom. Therefore, the force estimation is carried out simply by observing the Ramsey-type oscillations of the ion spin states. Three quantum probes are considered, which are represented by systems obeying the Jaynes-Cummings, quantum Rabi (in 1D) and Jahn-Teller (in 2D) models. By using dynamical decoupling schemes in the Jaynes-Cummings and Jahn-Teller models, our force sensing protocols can be made robust to the spin dephasing caused by the thermal and magnetic field fluctuations. In the quantum-Rabi probe, the residual spin-phonon coupling vanishes, which makes this sensing protocol naturally robust to thermally-induced spin dephasing. We show that the proposed techniques can be used to sense the axial and transverse components of the force with a sensitivity beyond the yN /Hz/\sqrt{\text{Hz}} range, i.e. in the xN/Hz /\sqrt{\text{Hz}} (xennonewton, 102710^{-27}). The Jahn-Teller protocol, in particular, can be used to implement a two-channel vector spectrum analyzer for measuring ultra-low voltages.Comment: 7 pages, 4 figure

    Analytic approximations to the phase diagram of the Jaynes-Cummings-Hubbard model with application to ion chains

    Full text link
    We discuss analytic approximations to the ground state phase diagram of the homogeneous Jaynes-Cummings-Hubbard (JCH) Hamiltonian with general short-range hopping. The JCH model describes e.g. radial phonon excitations of a linear chain of ions coupled to an external laser field tuned to the red motional sideband with Coulomb mediated hopping or an array of high-QQ coupled cavities containing a two-level atom and photons. Specifically we consider the cases of a linear array of coupled cavities and a linear ion chain. We derive approximate analytic expressions for the boundaries between Mott-insulating and superfluid phases and give explicit expressions for the critical value of the hopping amplitude within the different approximation schemes. In the case of an array of cavities, which is represented by the standard JCH model we compare both approximations to numerical data from density-matrix renormalization group (DMRG) calculations.Comment: 9 pages, 5 figures, extended and corrected second versio

    What could infant and young child nutrition learn from sweatshops?

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.BACKGROUND: Adequate infant and young child nutrition demands high rates of breastfeeding and good access to nutrient rich complementary foods, requiring public sector action to promote breastfeeding and home based complementary feeding, and private sector action to refrain from undermining breastfeeding and to provide affordable, nutrient rich complementary foods. Unfortunately, due to a lack of trust, the public and private sectors, from both the North and the South, do not work well together in achieving optimal infant and young child nutrition. DISCUSSION: As the current debate in infant and young child nutrition is reminiscent of the "sweatshop" debate fifteen years ago, we argue that lessons from the sweatshops debate regarding cooperation between public and private sectors - and specific organizational experiences such as the Ethical Trading Initiative in which companies, trade unions, and civil society organizations work together to enhance implementation of labour standards and address alleged allegations - could serve as a model for improving cooperation and trust between public, civil society and private groups, and ultimately health, in infant and young child nutrition. SUMMARY: Lessons from the sweatshops debate could serve as a model to promote cooperation and trust between public and private groups, such that they learn to work together towards their common goal of improving infant and young child nutrition

    Quantum sensors assisted by spontaneous symmetry breaking for detecting very small forces

    Get PDF
    We propose a quantum-sensing scheme for measuring weak forces based on a symmetry-breaking adiabatic transition in the quantum Rabi model. We show that the system described by the Rabi Hamiltonian can serve as a sensor for extremely weak forces with sensitivity beyond the yoctonewton (yN) per sqrt (Hz) range. We propose an implementation of this sensing protocol using a single trapped ion. A major advantage of our scheme is that the force detection is performed by projective measurement of the population of the spin states at the end of the transition, instead of the far slower phonon number measurement used hitherto

    Turning science into health solutions: KEMRI’s challenges as Kenya’s health product pathfinder

    Get PDF
    BACKGROUND: A traditional pathway for developing new health products begins with public research institutes generating new knowledge, and ends with the private sector translating this knowledge into new ventures. But while public research institutes are key drivers of basic research in sub-Saharan Africa, the private sector is inadequately prepared to commercialize ideas that emerge from these institutes, resulting in these institutes taking on the role of product development themselves to alleviate the local disease burden. In this article, the case study method is used to analyze the experience of one such public research institute: the Kenya Medical Research Institute (KEMRI). DISCUSSION: Our analysis indicates that KEMRI's product development efforts began modestly, and a manufacturing facility was constructed with a strategy for the facility's product output which was not very successful. The intended products, HIV and Hepatitis B diagnostic kits, had a short product life cycle, and an abrupt change in regulatory requirements left KEMRI with an inactive facility. These problems were the result of poor innovation management capacity, variability in domestic markets, lack of capital to scale up technologies, and an institutional culture that lacked innovation as a priority.However, KEMRI appears to have adapted by diversifying its product line to mitigate risk and ensure continued use of its manufacturing facility. It adopted an open innovation business model which linked it with investors, research partnerships, licensing opportunities, and revenue from contract manufacturing. Other activities that KEMRI has put in place over several years to enhance product development include the establishment of a marketing division, development of an institutional IP policy, and training of its scientists on innovation management. SUMMARY: KEMRI faced many challenges in its attempt at health product development, including shifting markets, lack of infrastructure, inadequate financing, and weak human capital with respect to innovation. However, it overcame them through diversification, partnerships and changes in culture. The findings could have implications for other research institutes in Sub-Saharan Africa seeking to develop health products. Such institutes must analyze potential demand and uptake, yet be prepared to face the unexpected and develop appropriate risk-mitigating strategies

    Quantum gate in the decoherence-free subspace of trapped ion qubits

    Full text link
    We propose a geometric phase gate in a decoherence-free subspace with trapped ions. The quantum information is encoded in the Zeeman sublevels of the ground-state and two physical qubits to make up one logical qubit with ultra long coherence time. Single- and two-qubit operations together with the transport and splitting of linear ion crystals allow for a robust and decoherence-free scalable quantum processor. For the ease of the phase gate realization we employ one Raman laser field on four ions simultaneously, i.e. no tight focus for addressing. The decoherence-free subspace is left neither during gate operations nor during the transport of quantum information.Comment: 6 pages, 6 figure

    The role of perceived benefits and costs in patients’ medical decisions

    Full text link
    Background  Many decisions can be understood in terms of actors’ valuations of benefits and costs. The article investigates whether this is also true of patient medical decision making. It aims to investigate (i) the importance patients attach to various reasons for and against nine medical decisions; (ii) how well the importance attached to benefits and costs predicts action or inaction; and (iii) how such valuations are related to decision confidence. Methods  In a national random digit dial telephone survey of U.S. adults, patients rated the importance of various reasons for and against medical decisions they had made or talked to a health‐care provider about during the past 2 years. Participants were 2575 English‐speaking adults age 40 and older. Data were analysed by means of logistic regressions predicting action/inaction and linear regressions predicting confidence. Results  Aggregating individual reasons into those that may be regarded as benefits and those that may be regarded as costs, and weighting them by their importance to the patient, shows the expected relationship to action. Perceived benefits and costs are also significantly related to the confidence patients report about their decision. Conclusion  The factors patients say are important in their medical decisions reflect a subjective weighing of benefits and costs and predict action/inaction although they do not necessarily indicate that patients are well informed. The greater the difference between the importance attached to benefits and costs, the greater patients’ confidence in their decision.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102701/1/hex739.pd

    Mineralogical, geochemical and isotopic characteristics of hydrothermal alteration processes in the active, submarine, felsic-hosted PACMANUS field, Manus Basin, Papua New Guinea

    Get PDF
    During ODP Leg 193, 4 sites were drilled in the active PACMANUS hydrothermal field on the crest of the felsic Pual Ridge to examine the vertical and lateral variations in mineralization and alteration patterns. We present new data on clay mineral assemblages, clay and whole rock chemistry and clay mineral strontium and oxygen isotopic compositions of altered rocks from a site of diffuse low-temperature venting (Snowcap, Site 1188) and a site of high-temperature venting (Roman Ruins, Site 1189) in order to investigate the water-rock reactions and associated elemental exchanges. The volcanic succession at Snowcap has been hydrothermally altered, producing five alteration zones: (1) chlorite +/- illite-cristobalite-plagioclase alteration apparently overprinted locally by pyrophyllite bleaching at temperatures of 260-310degreesC; (2) chlorite +/- mixed-layer clay alteration at temperatures of 230degreesC; (3) chlorite and illite alteration; (4) illite and chlorite +/- illite mixed-layer alteration at temperatures of 250-260degreesC; and (5) illite +/- chlorite alteration at 290-300degreesC. Felsic rocks recovered from two holes (1189A and 1189B) at Roman Ruins, although very close together, show differing alteration features. Hole 1189A is characterized by a uniform chlorite-illite alteration formed at similar to250degreesC, overprinted by quartz veining at 350degreesC. In contrast, four alteration zones occur in Hole 1189B: (1) illite chlorite alteration formed at similar to300degreesC; (2) chlorite +/- illite alteration at 235degreesC; (3) chlorite illite and. mixed layer clay alteration; and (4) chlorite illite alteration at 220degreesC. Mass balance calculations indicate that the chloritization, illitization and bleaching (silica-pyrophyllite assemblages) alteration stages are accompanied by different chemical changes relative to a calculated pristine precursor lava. The element Cr appears to have a general enrichment in the altered samples from PACMANUS. The clay concentrate data show that Cr and Cu are predominantly present in the pyrophyllites. Illite shows a significant enrichment for Cs and Cu relative to the bulk altered samples. Considerations of mineral stability allow us to place some constraints on fluid chemistry. Hydrothermal fluid pH for the chloritization and illitization was neutral to slightly acidic and relatively acidic for the pyrophyllite alteration. In general the fluids, especially from Roman Ruins and at intermediate depths below Snowcap, show only a small proportion of seawater mixing (<10%). Fluids in shallow and deep parts of the Snowcap holes, in contrast, show stronger seawater influence. Copyright (C) 2004 Elsevier Ltd
    corecore