2,281 research outputs found

    Imagining an ideal school for wellbeing: Locating student voice

    Get PDF
    ePublications@SCU is an electronic repository administered by Southern Cross University Library. Its goal is to capture and preserve the intellectual output of Southern Cross University authors and researchers, and to increase visibility and impact through open access to researchers around the world. For further information please contac

    Anomalous spin-dependent behaviour of one-dimensional subbands

    Full text link
    We report a new electron interaction effect in GaAs/AlGaAs quantum wires. Using DC-bias spectroscopy, we show that large and abrupt changes occur to the energies of spin-down (lower energy) states as they populate. The effect is not observed for spin-up energy states. At B=0, interactions have a pronounced effect, in the form of the well-known 0.7 Structure. However, our new results show that interactions strongly affect the energy spectrum at all magnetic fields, from 0 to 16T, not just in the vicinity of the 0.7 Structure.Comment: 4 pages, 2 figure

    Automated design analysis, assembly planning and motion study analysis using immersive virtual reality

    Get PDF
    Previous research work at Heriot-Watt University using immersive virtual reality (VR) for cable harness design showed that VR provided substantial productivity gains over traditional computer-aided design (CAD) systems. This follow-on work was aimed at understanding the degree to which aspects of this technology were contributed to these benefits and to determine if engineering design and planning processes could be analysed in detail by nonintrusively monitoring and logging engineering tasks. This involved using a CAD-equivalent VR system for cable harness routing design, harness assembly and installation planning that can be functionally evaluated using a set of creative design-tasks to measure the system and users' performance. A novel design task categorisation scheme was created and formalised which broke down the cable harness design process and associated activities. The system was also used to demonstrate the automatic generation of usable bulkhead connector, cable harness assembly and cable harness installation plans from non-intrusive user logging. Finally, the data generated from the user-logging allowed the automated activity categorisation of the user actions, automated generation of process flow diagrams and chronocyclegraphs

    Energy-level pinning and the 0.7 spin state in one dimension: GaAs quantum wires studied using finite-bias spectroscopy

    Full text link
    We study the effects of electron-electron interactions on the energy levels of GaAs quantum wires (QWs) using finite-bias spectroscopy. We probe the energy spectrum at zero magnetic field, and at crossings of opposite-spin-levels in high in-plane magnetic field B. Our results constitute direct evidence that spin-up (higher energy) levels pin to the chemical potential as they populate. We also show that spin-up and spin-down levels abruptly rearrange at the crossing in a manner resembling the magnetic phase transitions predicted to occur at crossings of Landau levels. This rearranging and pinning of subbands provides a phenomenological explanation for the 0.7 structure, a one-dimensional (1D) nanomagnetic state, and its high-B variants.Comment: 6 pages, 4 figure

    Anticrossing of spin-split subbands in quasi-one-dimensional wires

    Get PDF
    In quantum Hall systems, both anticrossings and magnetic phase transitions can occur when opposite-spin Landau levels coincide. Our results indicate that both processes are also possible in quasi-1D quantum wires in an in-plane B field, B-parallel to. Crossings of opposite-spin 1D subbands resemble magnetic phase transitions at zero dc source-drain bias, but display anticrossings at high dc bias. Our data also imply that the well-known 0.7 structure may evolve into a spin-hybridized state in finite dc bias

    Effects of accidental microconstriction on the quantized conductance in long wires

    Full text link
    We have investigated the conductance of long quantum wires formed in GaAs/AlGaAs heterostructures. Using realistic fluctuation potentials from donor layers we have simulated numerically the conductance of four different kinds of wires. While ideal wires show perfect quantization, potential fluctuations from random donors may give rise to strong conductance oscillations and degradation of the quantization plateaux. Statistically there is always the possibility of having large fluctuations in a sample that may effectively act as a microconstriction. We therefore introduce microconstrictions in the wires by occasional clustering of donors. These microconstrictions are found to restore the quantized plateaux. A similar effect is found for accidental lithographic inaccuracies.Comment: 4 pages, 2 figures, paper for NANO2002 symposium, will appear in SPIE proceeding

    Velocity measurements in the vicinity of the exit and inlet of a spiral bevel gear shroud

    Get PDF
    In many aeroengines the accessory power offtake is achieved using a spiral bevel gear set running off one of the main shafts. The crown and bevel gears are housed in an internal gearbox. Over the past few years the Nottingham University Technology Centre (UTC) in Gas Turbine Transmission Systems has researched flow near spiral bevel gears both computationally and experimentally using a purpose-built test rig. In the current investigation the rig was configured with a Trent crown gear and slightly modified shroud covering the full 360° of the gear. No external containment chamber was fitted and all testing was conducted single-phase (air only) at 5,000 rpm. Laser Doppler Anemometry (LDA) was used to obtain the three components of flow velocity at a shroud exit slot and at shroud inlet. A 2D system was utilised and thus two measurements were required at each point to give the 3 velocity components. The LDA technique enabled detailed mapping of flow features over the chosen regions, which included areas very near the shroud surfaces. Data was obtained over two measurement regions: 1) a volume mapping the air “jet” exiting the shroud exit slot at top dead centre (TDC) and 2) an area capturing the flow structures local to the shroud inlet. Combined the results form an excellent set of high quality, detailed, 3-component flow data for direct use in validating CFD models and/or to define CFD boundary conditions. At the shroud exit slot the maximum velocity measured was 46.2 m/s with the jet velocity dispersing over the measurement volume such that by 26 mm from slot plane the maximum velocity was less than 20 m/s. The jet angle was found to be only 16° off perpendicular azimuthally and 22° down from perpendicular. Data from the top 5 slots shows good similarity indicating the detailed data for the TDC slot is probably applicable to all slots. Air entering the shroud comes down the shroud face and up the rotating end face of the gear shaft. The azimuthal velocity component at shroud inlet was around 20 m/s; this is of the order of 50% of the maximum linear shaft surface speed. Within 3 mm of the rotating gear face the azimuthal velocity is less than 1 m/s. Detailed measurements were obtained only at one angular location but sufficient additional measurements were obtained to determine that for the purposes of CFD validation the results can be considered representative

    Protease inhibitors targeting coronavirus and filovirus entry.

    Get PDF
    In order to gain entry into cells, diverse viruses, including Ebola virus, SARS-coronavirus and the emerging MERS-coronavirus, depend on activation of their envelope glycoproteins by host cell proteases. The respective enzymes are thus excellent targets for antiviral intervention. In cell culture, activation of Ebola virus, as well as SARS- and MERS-coronavirus can be accomplished by the endosomal cysteine proteases, cathepsin L (CTSL) and cathepsin B (CTSB). In addition, SARS- and MERS-coronavirus can use serine proteases localized at the cell surface, for their activation. However, it is currently unclear which protease(s) facilitate viral spread in the infected host. We report here that the cysteine protease inhibitor K11777, ((2S)-N-[(1E,3S)-1-(benzenesulfonyl)-5-phenylpent-1-en-3-yl]-2-{[(E)-4-methylpiperazine-1-carbonyl]amino}-3-phenylpropanamide) and closely-related vinylsulfones act as broad-spectrum antivirals by targeting cathepsin-mediated cell entry. K11777 is already in advanced stages of development for a number of parasitic diseases, such as Chagas disease, and has proven to be safe and effective in a range of animal models. K11777 inhibition of SARS-CoV and Ebola virus entry was observed in the sub-nanomolar range. In order to assess whether cysteine or serine proteases promote viral spread in the host, we compared the antiviral activity of an optimized K11777-derivative with that of camostat, an inhibitor of TMPRSS2 and related serine proteases. Employing a pathogenic animal model of SARS-CoV infection, we demonstrated that viral spread and pathogenesis of SARS-CoV is driven by serine rather than cysteine proteases and can be effectively prevented by camostat. Camostat has been clinically used to treat chronic pancreatitis, and thus represents an exciting potential therapeutic for respiratory coronavirus infections. Our results indicate that camostat, or similar serine protease inhibitors, might be an effective option for treatment of SARS and potentially MERS, while vinyl sulfone-based inhibitors are excellent lead candidates for Ebola virus therapeutics
    • …
    corecore