16 research outputs found

    Microwave Microlitre Lab-on-Substrate Liquid Characterisation based on SIW Slot Antenna

    Get PDF
    A microwave microlitre binary liquid mixture concentration detection sensor with potential biological analysis is presented. The microwave lab-on-substrate sensor is fabricated using a substrate integrated waveguide (SIW) slot antenna. The microfluidic channel encapsulating liquid under investigation is located on top of the antenna slot at a quarter wavelength from the short-circuited end of the SIW. The radiated electric nearfield interaction with the liquid mixture exhibits different relationships between the complex permittivity of the liquid mixtures versus the resonant frequency and return loss, discriminating types and percentages of mixed liquid. The sensor was initially demonstrated with three types of samples: deionised water, methanol and air. A resonant frequency shift of 110MHz was measured to discriminate between air and deionised water while we obtained a 20MHz resonant frequency shift between air and methanol. Furthermore, the sensor was used to assess deionised water-methanol mixtures with methanol fractional volumes of 0 to 1 in 0.2 steps. The microwave-microfluidic sensor is contactless, uses readily available materials, cost effective and offers fast and accurate liquid characterisation

    A Microfluidic-Integrated SIW Lab-on-Substrate Sensor for Microliter Liquid Characterization

    Get PDF
    A novel microfluidic-integrated microwave sensor with potential application in microliter-volume biological/biomedical liquid sample characterization and quantification is presented in this paper. The sensor is designed based on the resonance method, providing the best sensing accuracy, and implemented by using a substrate-integrated-waveguide (SIW) structure combining with a rectangular slot antenna operating at 10 GHz. The device can perform accurate characterization of various liquid materials from very low to high loss, demonstrated by measurement of deionized (DI) water and methanol liquid mixtures. The measured relative permittivity, which is the real part of complex permittivity, ranges from 8.58 to 66.12, which is simply limited by the choice of test materials available in our laboratory, not any other technical considerations of the sensor. The fabricated sensor prototype requires a very small liquid volume of less than 7 µl, while still offering an overall accuracy of better than 3 %, as compared to the commercial and other published works. Key advantages of the proposed sensor are that it combines 1.) a very low-profile planar and miniaturized structure sensing microliter liquid volume; 2.) ease of design and fabrication, which makes it cost-effective to manufacture and 3.) noninvasive and contactless measurements. Moreover, since the microfluidic subsystem can potentially be detached from the SIW microwave sensor and, afterward, replaced by a new microfluidic component, the sensor can be reused with no life-cycle limitation and without degrading any figure of merit

    Nano-Fluidic Millimeter-Wave Lab-on-a-Waveguide Sensor for Liquid-Mixture Characterization

    Get PDF
    This paper reports on a miniaturized lab-on-a-waveguide liquid-mixture sensor, achieving highly-accurate nanoliter liquid sample characterization, for biomedical applications. The nanofluidic-integrated millimeter-wave sensor design is based on near-field transmission-line technique implemented by a single loop slot antenna operating at 91 GHz, fabricated into the lid of a photolaser-based subtractive manufactured WR-10 rectangular waveguide. The nanofluidic subsystem, which is mounted on top of the antenna aperture, is fabricated by using multiple Polytetrafluoroethylene (PTFE) layers to encapsulate and isolate the liquid sample during the experiment, hence, offering various preferable features e.g. noninvasive and contactless measurements. Moreover, the sensor is reusable by replacing only the nanofluidic subsystem, resulting a cost-effective sensor. The novel sensor can measure a liquid volume of as low as 210 nanoliters, while still achieving a discrimination accuracy of better than 2% of ethanol in the ethanol/deionized-water liquid mixture with a standard deviation of lower than 0.008 from at least three repeated measurements, resulting in the highest accurate ethanol and DI-water discriminator reported to date. The nanofluidic-integrated millimeter-wave sensor also offers other advantages such as ease of design, low fabrication and material cost, and no life-cycle limitation of the millimeter-wave subsystem

    Nutritional implications of olives and sugar: attenuation of post-prandial glucose spikes in healthy volunteers by inhibition of sucrose hydrolysis and glucose transport by oleuropein

    No full text
    Purpose: The secoiridoid oleuropein, as found in olives and olive leaves, modulates some biomarkers of diabetes risk in vivo. A possible mechanism may be to attenuate sugar digestion and absorption. Methods: We explored the potential of oleuropein, prepared from olive leaves in a water soluble form (OLE), to inhibit digestive enzymes (α-amylase, maltase, sucrase), and lower [¹⁴C(U)]-glucose uptake in Xenopus oocytes expressing human GLUT2 and [¹⁴C(U)]-glucose transport across differentiated Caco-2 cell monolayers. We conducted 7 separate crossover, controlled, randomised intervention studies on healthy volunteers (double-blinded and placebo-controlled for the OLE supplement) to assess the effect of OLE on post-prandial blood glucose after consumption of bread, glucose or sucrose. Results: OLE inhibited intestinal maltase, human sucrase, glucose transport across Caco-2 monolayers, and uptake of glucose by GLUT2 in Xenopus oocytes, but was a weak inhibitor of human α-amylase. OLE, in capsules, in solution or as naturally present in olives, did not affect post-prandial glucose derived from bread, while OLE in solution attenuated post-prandial blood glucose after consumption of 25 g sucrose, but had no effect when consumed with 50 g of sucrose or glucose. Conclusion: The combined inhibition of sucrase activity and of glucose transport observed in vitro was sufficient to modify digestion of low doses of sucrose in healthy volunteers. In comparison, the weak inhibition of α-amylase by OLE was not enough to modify blood sugar when consumed with a starch-rich food, suggesting that a threshold potency is required for inhibition of digestive enzymes in order to translate into in vivo effects

    Acute metabolic actions of the major polyphenols in chamomile: an in vitro mechanistic study on their potential to attenuate postprandial hyperglycaemia

    Get PDF
    Transient hyperglycaemia is a risk factor for type 2 diabetes and endothelial dysfunction, especially in subjects with impaired glucose tolerance. Nutritional interventions and strategies for controlling postprandial overshoot of blood sugars are considered key in preventing progress to the disease state. We have identified apigenin-7-O-glucoside, apigenin, and (Z) and (E)-2-hydroxy-4-methoxycinnamic acid glucosides as the active (poly)phenols in Chamomile (Matricaria recutita) able to modulate carbohydrate digestion and absorption in vitro as assessed by inhibition of α-amylase and maltase activities. The latter two compounds previously mistakenly identified as ferulic acid hexosides were purified and characterised and studied for their contribution to the overall bioactivity of chamomile. Molecular docking studies revealed that apigenin and cinnamic acids present totally different poses in the active site of human α-amylase. In differentiated Caco-2/TC7 cell monolayers, apigenin-7-O-glucoside and apigenin strongly inhibited D-[U-14C]-glucose and D-[U-14C]-sucrose transport, and less effectively D-[U-14C]-fructose transport. Inhibition of D-[U-14C]- glucose transport by apigenin was stronger under Na+-depleted conditions, suggesting interaction with the GLUT2 transporter. Competitive binding studies with molecular probes indicate apigenin interacts primarily at the exofacial-binding site of GLUT2. Taken together, the individual components of Chamomile are promising agents for regulating carbohydrate digestion and sugar absorption at the site of the gastrointestinal tract

    Inhibition of human α-amylase by dietary polyphenols

    Get PDF
    Functional foods offer the possibility to modulate the absorption of sugars, leading to benefits for diabetics and those with metabolic syndrome. As part of the characterisation of such foods, inhibition of α-amylase is used to assess components for their potential ability to modify the post-prandial glycaemic response. Many publications on phenolics as potential inhibitors report widely varying assay conditions leading to variable estimates of inhibition. On this basis, we have optimised the in vitro α-amylase inhibition assay and, in particular, we show the importance of removing certain polyphenols after the enzymic reaction when using 3,5-dinitrosalicylic acid since they interfere with this reagent. There was a substantial ~5-fold effect on acarbose IC50 values when working just outside optimal conditions. This shows that inappropriate assay conditions, such as excess enzyme, greatly influence IC50 values and could explain some discrepancies in the existing literature
    corecore