1,490 research outputs found

    Paper Session I-B - Maximization of Benefits From the Space Exploration Initiative

    Get PDF
    On the 20th anniversary, in 1989, of our country\u27s triumphant first landing on the surface of our moon, the President of the United States once again challenged the nation to excel in space. Since that time, a series of outreach efforts was initiated by NASA to the aerospace industry, federal agencies, and the public. In addition, the Vice President of the United States chartered an Advisory Committee on the Future of the U.S. Space Program. At this writing, the AIAA has submitted a report on their canvass of the aerospace community, and the Advisory Committee report has been published. The synthesis group is in the conclusion preparation phase and should have the report completed by the time of this conference. Although each of these groups has taken different approaches, a consensus does appear that agrees with the President\u27s objectives. Whether the schedule or architectures agree, they all recommend a ...\u27 \u27balanced Space Program for America. We will, within budgetary limits, reenergize our country\u27s thrust into space through a renewed dedication toward the long-term magnet for the manned space program ... the human exploration of Mars. This, of course, is the long-term goal coupled with the science, mission-to-planet Earth, expanded technology and development of a robust space transportation system that make up the balanced program recommended. The authors do not disagree with the goals, objectives, or recommendations of the two reports published to date nor will we differ with the synthesis conclusions after they become apparent. We will briefly summarize the results of an .analysis conducted by McDonnell Douglas and Eagle Engineering in the second and third quarters of CY9Q. The results will show the benefits of space programs and suggest an overall approach to space architecture that could help maximize the world benefits of space while still meeting the overall objectives of the three sets of recommendations mentioned above. We acknowledge the work of the con- \u27 tributors to the AIAA report and to numerous NASA studies of specific endeavors such as the Lunar Energy Enterprise study. This paper is a much shortened version of the entire treatment. A more complete presentation will be available from the authors at the conference if desired

    Wind reversals in turbulent Rayleigh-Benard convection

    Get PDF
    The phenomenon of irregular cessation and subsequent reversal of the large-scale circulation in turbulent Rayleigh-B\'enard convection is theoretically analysed. The force and thermal balance on a single plume detached from the thermal boundary layer yields a set of coupled nonlinear equations, whose dynamics is related to the Lorenz equations. For Prandtl and Rayleigh numbers in the range 102Pr10310^{-2} \leq \Pr \leq 10^{3} and 10^{7} \leq \Ra \leq 10^{12}, the model has the following features: (i) chaotic reversals may be exhibited at Ra 107\geq 10^{7}; (ii) the Reynolds number based on the root mean square velocity scales as \Re_{rms} \sim \Ra^{[0.41 ... 0.47]} (depending on Pr), and as rmsPr[0.66...0.76]\Re_{rms} \sim \Pr^{-[0.66 ... 0.76]} (depending on Ra); and (iii) the mean reversal frequency follows an effective scaling law \omega / (\nu L^{-2}) \sim \Pr^{-(0.64 \pm 0.01)} \Ra^{0.44 \pm 0.01}. The phase diagram of the model is sketched, and the observed transitions are discussed.Comment: 4 pages, 5 figure

    Silicon waveguide modulator based on carrier depletion in periodically interleaved PN junctions

    Get PDF
    We present the design and numerical simulation results for a silicon waveguide modulator based on carrier depletion in a linear array of periodically interleaved PN junctions that are oriented perpendicular to the light propagation direction. In this geometry the overlap of the optical waveguide mode with the depletion region is much larger than in designs using a single PN junction aligned parallel to the waveguide propagation direction. Simulations predict that an optimized modulator will have a high modulation efficiency of 0.56 V.cm for a 3V bias, with a 3 dB frequency bandwidth of over 40 GHz. This device has a length of 1.86 mm with a maximum intrinsic loss of 4.3 dB at 0V bias, due to free carrier absorption. (C) 2009 Optical Society of Americ

    Non-Oberbeck-Boussinesq effects in turbulent thermal convection in ethane close to the critical point

    Get PDF
    As shown in earlier work (Ahlers et al., J. Fluid Mech. 569, p.409 (2006)), non-Oberbeck Boussinesq (NOB) corrections to the center temperature in turbulent Rayleigh-Benard convection in water and also in glycerol are governed by the temperature dependences of the kinematic viscosity and the thermal diffusion coefficient. If the working fluid is ethane close to the critical point the origin of non-Oberbeck-Boussinesq corrections is very different, as will be shown in the present paper. Namely, the main origin of NOB corrections then lies in the strong temperature dependence of the isobaric thermal expansion coefficient \beta(T). More precisely, it is the nonlinear T-dependence of the density \rho(T) in the buoyancy force which causes another type of NOB effect. We demonstrate that through a combination of experimental, numerical, and theoretical work, the latter in the framework of the extended Prandtl-Blasius boundary layer theory developed in Ahlers et al., J. Fluid Mech. 569, p.409 (2006). The latter comes to its limits, if the temperature dependence of the thermal expension coefficient \beta(T) is significant.Comment: 18 pages, 15 figures, 3 table

    The potential role of T-cells and their interaction with antigen-presenting cells in mediating immunosuppression following trauma-hemorrhage

    Get PDF
    Objective: Trauma-hemorrhage results in depressed immune responses of antigen-presenting cells (APCs) and T-cells. Recent studies suggest a key role of depressed T-cell derived interferon (IFN)-g in this complex immune cell interaction. The aim of this study was to elucidate further the underlying mechanisms responsible for dysfunctional T-cells and their interaction with APCs following trauma-hemorrhage. Design: Adult C3H/HeN male mice were subjected to trauma-hemorrhage (3-cm midline laparotomy) followed by hemorrhage (blood pressure of 35�5mmHg for 90 min and resuscitation) or sham operation. At 24 h thereafter, spleens were harvested and T-cells (by Microbeads) and APCs (via adherence) were Isolated. Co-cultures of T-cells and APCs were established for 48 h and stimulated with concanavalin A and lipopolysaccharide. T-Cell specific cytokines known to affect APC function (i.e. interleukin(IL)-2, IL-4 and granulocyte-macrophage colony-stimulating factor (GM-CSF)) were measured in culture supernatants by Multiplex assay. The expression of MHC class II as well as co-stimulatory surface molecules on T-cells and APCs was determined by flow cytometry. Results: The release of IL-4 and GM-CSF by T-cells was suppressed following trauma-hemorrhage, irrespective of whether sham or trauma-hemorrhage APCs were present. Antigen-presenting cells from animals subjected to trauma-hemorrhage did not affect T-cell derived cytokine release by sham T-cells. In contrast, T-cells from traumahemorrhage animals depressed MHC class II expression of CD11c(þ) cells, irrespective of whether APCs underwent sham or trauma-hemorrhage procedure. Surprisingly, co-stimulatory molecules on APCs (CD80, CD86) were not affected by trauma-hemorrhage. Conclusions: These results suggest that beside IFN-g other T-cell derived cytokines contribute to immunosuppression following trauma-hemorrhage causing diminished MHC II expression on APCs. Thus, T-cells appear to play an important role in this interaction at the time-point examined. Therapeutic approaches should aim at maintenance of T-cell function and their interaction with APCs to prevent extended immunosuppression following trauma-hemorrhage

    Forest fires and other examples of self-organized criticality

    Full text link
    We review the properties of the self-organized critical (SOC) forest-fire model. The paradigm of self-organized criticality refers to the tendency of certain large dissipative systems to drive themselves into a critical state independent of the initial conditions and without fine-tuning of the parameters. After an introduction, we define the rules of the model and discuss various large-scale structures which may appear in this system. The origin of the critical behavior is explained, critical exponents are introduced, and scaling relations between the exponents are derived. Results of computer simulations and analytical calculations are summarized. The existence of an upper critical dimension and the universality of the critical behavior under changes of lattice symmetry or the introduction of immunity are discussed. A survey of interesting modifications of the forest-fire model is given. Finally, several other important SOC models are briefly described.Comment: 37 pages RevTeX, 13 PostScript figures (Figs 1, 4, 13 are of reduced quality to keep download times small

    Variational bound on energy dissipation in plane Couette flow

    Full text link
    We present numerical solutions to the extended Doering-Constantin variational principle for upper bounds on the energy dissipation rate in turbulent plane Couette flow. Using the compound matrix technique in order to reformulate this principle's spectral constraint, we derive a system of equations that is amenable to numerical treatment in the entire range from low to asymptotically high Reynolds numbers. Our variational bound exhibits a minimum at intermediate Reynolds numbers, and reproduces the Busse bound in the asymptotic regime. As a consequence of a bifurcation of the minimizing wavenumbers, there exist two length scales that determine the optimal upper bound: the effective width of the variational profile's boundary segments, and the extension of their flat interior part.Comment: 22 pages, RevTeX, 11 postscript figures are available as one uuencoded .tar.gz file from [email protected]

    Universality in fully developed turbulence

    Get PDF
    We extend the numerical simulations of She et al. [Phys.\ Rev.\ Lett.\ 70, 3251 (1993)] of highly turbulent flow with 1515 \le Taylor-Reynolds number Reλ200Re_\lambda\le 200 up to Reλ45000Re_\lambda \approx 45000, employing a reduced wave vector set method (introduced earlier) to approximately solve the Navier-Stokes equation. First, also for these extremely high Reynolds numbers ReλRe_\lambda, the energy spectra as well as the higher moments -- when scaled by the spectral intensity at the wave number kpk_p of peak dissipation -- can be described by {\it one universal} function of k/kpk/k_p for all ReλRe_\lambda. Second, the ISR scaling exponents ζm\zeta_m of this universal function are in agreement with the 1941 Kolmogorov theory (the better, the large ReλRe_\lambda is), as is the ReλRe_\lambda dependence of kpk_p. Only around kpk_p viscous damping leads to slight energy pileup in the spectra, as in the experimental data (bottleneck phenomenon).Comment: 14 pages, Latex, 5 figures (on request), 3 tables, submitted to Phys. Rev.
    corecore