82 research outputs found

    Evidence for charge orbital and spin stripe order in an overdoped manganite

    Full text link
    We present diffraction data on a single-layered manganite La(0.42)Sr(1.58)MnO4 with hole doping (x>0.5). Overdoped La(0.42)Sr(1.58)MnO4 exhibits a complex ordering of charges, orbitals and spins. Single crystal neutron diffraction experiments reveal three incommensurate and one commensurate order parameters to be tightly coupled. The position and the shape of the distinct superstructure scattering points to a stripe arrangement in which ferromagnetic zigzag chains are disrupted by additional Mn4+ stripes

    Magnetic excitations in the metallic single-layer Ruthenates Ca(2-x)Sr(x)RuO(4) studied by inelastic neutron scattering

    Get PDF
    By inelastic neutron scattering, we have analyzed the magnetic correlations in the paramagnetic metallic region of the series Ca(2-x)Sr(x)RuO(4), 0.2<=x<=0.62. We find different contributions that correspond to 2D ferromagnetic fluctuations and to fluctuations at incommensurate wave vectors (0.11,0,0), (0.26,0,0) and (0.3,0.3,0). These components constitute the measured response as function of the Sr-concentration x, of the magnetic field and of the temperature. A generic model is applicable to metallic Ca(2-x)Sr(x)RuO(4) close to the Mott transition, in spite of their strongly varying physical properties. The amplitude, characteristic energy and width of the incommensurate components vary only little as function of x, but the ferromagnetic component depends sensitively on concentration, temperature and magnetic field. While ferromagnetic fluctuations are very strong in Ca1.38Sr0.62RuO4 with a low characteristic energy of 0.2 meV at T=1.5 K, they are strongly suppressed in Ca1.8Sr0.2RuO4, but reappear upon the application of a magnetic field and form a magnon mode above the metamagnetic transition. The inelastic neutron scattering results document how the competition between ferromagnetic and incommensurate antiferromagnetic instabilities governs the physics of this system

    Incommensurate antiferromagnetic fluctuations in single-crystalline LiFeAs studied by inelastic neutron scattering

    Full text link
    We present an inelastic neutron scattering study on single-crystalline LiFeAs devoted to the characterization of the incommensurate antiferromagnetic fluctuations at Q=(0.5±δ,0.5∓δ,ql)\mathbf{Q}=(0.5\pm\delta, 0.5\mp\delta, q_l). Time-of-flight measurements show the presence of these magnetic fluctuations up to an energy transfer of 60 meV, while polarized neutrons in combination with longitudinal polarization analysis on a triple-axis spectrometer prove the pure magnetic origin of this signal. The normalization of the magnetic scattering to an absolute scale yields that magnetic fluctuations in LiFeAs are by a factor eight weaker than the resonance signal in nearly optimally Co-doped BaFe2_2As2_2, although a factor two is recovered due to the split peaks owing to the incommensurability. The longitudinal polarization analysis indicates weak spin space anisotropy with slightly stronger out-of-plane component between 6 and 12 meV. Furthermore, our data suggest a fine structure of the magnetic signal most likely arising from superposing nesting vectors.Comment: 9 pages, 8 figure

    Melting of magnetic correlations in charge-orbital ordered La(0.5)Sr(1.5)MnO(4) : competition of ferro and antiferromagnetic states

    Get PDF
    The magnetic correlations in the charge- and orbital-ordered manganite La(0.5)Sr(1.5)MnO(4) have been studied by elastic and inelastic neutron scattering techniques. Out of the well-defined CE-type magnetic structure with the corresponding magnons a competition between CE-type and ferromagnetic fluctuations develops. Whereas ferromagnetic correlations are fully suppressed by the static CE-type order at low temperature, elastic and inelastic CE-type correlations disappear with the melting of the charge-orbital order at high temperature. In its charge-orbital disordered phase, La(0.5)Sr(1.5)MnO(4) exhibits a dispersion of ferromagnetic correlations which remarkably resembles the magnon dispersion in ferromagnetically ordered metallic perovskite manganites.Comment: 14 pages, 11 figure

    Neutron scattering study of the magnetic phase diagram of underdoped YBa(2)Cu(3)O(6+x)

    Get PDF
    We present a neutron triple-axis and resonant spin-echo spectroscopy study of the spin correlations in untwinned YBCO crystals with x= 0.3, 0.35, and 0.45 as a function of temperature and magnetic field. As the temperature T approaches 0, all samples exhibit static incommensurate magnetic order with propagation vector along the a-direction in the CuO2 planes. The incommensurability delta increases monotonically with hole concentration, as it does in LSCO. However, delta is generally smaller than in LSCO at the same doping level. The intensity of the incommensurate Bragg reflections increases with magnetic field for YBCO(6.45) (superconducting Tc = 35 K), whereas it is field-independent for YBCO(6.35) (Tc = 10 K). These results suggest that YBCO samples with x ~ 0.5 exhibit incommensurate magnetic order in the high fields used for the recent quantum oscillation experiments on this system, which likely induces a reconstruction of the Fermi surface. We present neutron spin-echo measurements (with energy resolution ~ 1 micro-eV) for T > 0 that demonstrate a continuous thermal broadening of the incommensurate magnetic Bragg reflections into a quasielastic peak centered at excitation energy E = 0, consistent with the zero-temperature transition expected for a two-dimensional spin system with full spin-rotation symmetry. Measurements on YBCO(6.45) with a triple-axis spectrometer (with energy resolution ~ 100 micro-eV) yield a crossover temperature T_SDW ~ 30 K for the onset of quasi-static magnetic order. Upon further heating, the wavevector characterizing low-energy spin excitations approaches the commensurate antiferromagnetic wave vector, and the incommensurability vanishes in an order-parameter-like fashion at an "electronic liquid-crystal" onset temperature T_ELC ~ 150 K. Both T_SDW and T_ELC increase continuously as the Mott-insulating phase is approached with decreasing doping level.Comment: to appear in a special issue on "Fermiology of Cuprates" of the New Journal of Physic

    Incommensurate magnetic ordering in Sr_2Ru_(1-x)Ti_xO_4

    Full text link
    In Sr2RuO4\rm Sr_2RuO_4 the spin excitation spectrum is dominated by incommensurate fluctuations at q=(0.3 0.3 qz_z), which arise from Fermi-surface nesting. We show that upon Ti substitution, known to suppress superconductivity, a short range magnetic order develops with a propagation vector (0.307 0.307 1). This finding confirms that superconducting Sr2RuO4\rm Sr_2RuO_4 is extremely close to an incommensurate spin density wave instability. In addition, the ordered moment in \srton ~ points along the c-direction, which indicates that the incommensurate spin fluctuations exhibit the anisotropy required to explain a p-wave spin triplet pairing.Comment: 4 pages 3 figures revtex-version correcte

    Refraction in exoplanet atmospheres: Photometric signatures, implications for transmission spectroscopy, and search in Kepler data

    Full text link
    Refraction deflects photons that pass through atmospheres, which affects transit light curves. Refraction thus provides an avenue to probe physical properties of exoplanet atmospheres and to constrain the presence of clouds and hazes. In addition, an effective surface can be imposed by refraction, thereby limiting the pressure levels probed by transmission spectroscopy. The main objective of the paper is to model the effects of refraction on photometric light curves for realistic planets and to explore the dependencies on atmospheric physical parameters. We also explore under which circumstances transmission spectra are significantly affected by refraction. Finally, we search for refraction signatures in photometric residuals in Kepler data. We use the model of Hui & Seager (2002) to compute deflection angles and refraction transit light curves, allowing us to explore the parameter space of atmospheric properties. The observational search is performed by stacking large samples of transit light curves from Kepler. We find that out-of-transit refraction shoulders are the most easily observable features, which can reach peak amplitudes of ~10 parts per million (ppm) for planets around Sun-like stars. More typical amplitudes are a few ppm or less for Jovians and at the sub-ppm level for super-Earths. Interestingly, the signal-to-noise ratio of any refraction residuals for planets orbiting Sun-like hosts are expected to be similar for planets orbiting red dwarfs. We also find that the maximum depth probed by transmission spectroscopy is not limited by refraction for weakly lensing planets, but that the incidence of refraction can vary significantly for strongly lensing planets. We find no signs of refraction features in the stacked Kepler light curves, which is in agreement with our model predictions.Comment: Accepted for publication in A&

    Magnetic Phase Diagram of Ca2-xSrxRuO4 Governed by Structural Distortions

    Full text link
    We constructed, by the first-principles calculations, a magnetic phase diagram of Sr2_{2}RuO4_4 in the space spanned by structural distortions. Our phase diagram can qualitatively explain the experimental one for Ca2−x_{2-x}Srx_xRuO4_4. We found that the rotation and the tilting of RuO6_6 octahedron are responsible for the ferro- and antiferro-magnetism, respectively, while the flattening of RuO6_6 is the key factor to stabilize those magnetic ground states. Our results imply that the magnetic and the structural instabilities in Sr2_2RuO4_4 are closely correlated cooperatively rather than competitively.Comment: 3 figures; accepted by PRB as rapid communicatio

    Structural and magnetic aspects of the metal insulator transition in Ca2−x_{2-x}Srx_xRuO4_4

    Full text link
    The phase diagram of Ca2−x_{2-x}Srx_xRuO4_4 has been studied by neutron diffraction on powder and single-crystalline samples. The experiments reveal antiferromagnetic order and structural distortions characterized by tilts and rotations of the RuO6_6-octahedra. There is strong evidence that the structural details of the isovalent samples tune the magnetic as well as the electronic behavior. In particular we observe for low Sr-concentration a metal insulator transition associated with a structural change and magnetic ordering
    • …
    corecore