We present an inelastic neutron scattering study on single-crystalline LiFeAs
devoted to the characterization of the incommensurate antiferromagnetic
fluctuations at Q=(0.5±δ,0.5∓δ,ql). Time-of-flight
measurements show the presence of these magnetic fluctuations up to an energy
transfer of 60 meV, while polarized neutrons in combination with longitudinal
polarization analysis on a triple-axis spectrometer prove the pure magnetic
origin of this signal. The normalization of the magnetic scattering to an
absolute scale yields that magnetic fluctuations in LiFeAs are by a factor
eight weaker than the resonance signal in nearly optimally Co-doped
BaFe2As2, although a factor two is recovered due to the split peaks owing
to the incommensurability. The longitudinal polarization analysis indicates
weak spin space anisotropy with slightly stronger out-of-plane component
between 6 and 12 meV. Furthermore, our data suggest a fine structure of the
magnetic signal most likely arising from superposing nesting vectors.Comment: 9 pages, 8 figure