191 research outputs found

    Performance and Evaluation of Drip Irrigation System, and Its Future Advantages

    Get PDF
    The drip irrigation system is a kind of micro-irrigation system that has the potential to salvage the water and other nutrients by entrance water to drip gradually to the main roots of plants and other plant parts, which is from on the soil surface or buried inside the soil surface. The main aim of drip irrigation is to place water directly into the main root zone and decrease the water vapor. The system Drip irrigation spreads water through a schematic shape of different tubes, emitters, pipes, and valves. Its depending on the designed how well it make, maintained, installed, and operated it is, a system drip irrigation can be more useful than other various types of drip irrigation systems, like as sprinkler irrigation or surface irrigation. The system drip irrigation is firstly introduced mainly to save water and step-up the water use efficiency in agriculture field. More ever, it also presents various other social and economic benefits to the society. In drip irrigation system water is utalized micro jet or by drop by drop, on the surface of soil or under the soil, at a lower rate than the infiltration of the soil. In our this research, deeply research works heed water management for system drip irrigation and its upcoming advantages has been discussed and reviewed so that a precise perception may be existence for the farmers and for futures.Keywords: Drip irrigation, dipper line, water, Fertigation system.DOI: 10.7176/JBAH/9-9-04 Publication date:May 31st 201

    Experimental Study on the Performance of RT 25 to be Used as Ambient Energy Storage

    Get PDF
    AbstractThe proposed experimental work intends to analyse the thermal performance of a TES unit incorporated into a ventilation system under different working conditions. The influences of the air inlet temperature and velocity on the air outlet temperature and heat transfer rate were investigated The air inlet temperature used for the solidification of RT25 were 10°C, 12°C and 14°C and for the melting 34°C, 36°C and 38°C. The selected air inlet velocities were the same for the melting and solidification process: 0.5 m/s, 1.4 m/s and 2.5 m/s. The results suggest that an increase of the air inlet velocity reduces linearly the temperature difference between the air inlet and outlet for the solidification process of the RT25. Contrary, for the melting of the RT25, increasing the air inlet velocity does not reduce the temperature difference linearly, increasing the air inlet temperature furthermore from 36°C to 38°C did not affect the melting time. The air inlet temperature plays a significant role on the melting process, reducing linearly the air inlet and outlet temperature difference and the heat transfer rate, however does not influence the solidification process, similar air inlet and outlet temperature difference and the heat transfer rate were obtained for all condition.Thus, air inlet velocity and air inlet temperature have to be carefully balanced to optimize the whole running cycle of both melting and solidification processes

    The effect of seawater layer on cable-stayed bridge under tri-direction spatial varying ground motions

    Get PDF
    In recently years, many sea-crossing bridges were built in some countries. For the complexity of seafloor condition and the stochastic characteristics of earthquakes, it is necessary to research the seismic responses of these sea-crossing bridges located on seawater layer and irregular bottom conditions. In this paper, a theory of the spatial varying ground motions was derived considering the wave propagation in soil and water. The effects of sea water layer, wave passage, coherence, local site and soil saturation on the seismic responses of a cable-stayed bridge were researched. The transfer function was used to calculate the local site effect and soil saturation effect. The seawater layer effect was studied via a simple medal from Crouse and Quilter. Multi-support and tri-direction excitations were utilized with large mass method. The seismic responses of a long span cable-stay bridge in the site conditions with and without seawater were compared. The results present that the seawater layer affects the earthquake response of bridge greatly, and the soil types have different effects on the different component of bridge. The research will help reasonably evaluate the security of sea-crossing bridge under earthquake excitation

    Detection of Favorable QTL Alleles and Candidate Genes for Lint Percentage by GWAS in Chinese Upland Cotton

    Get PDF
    Improving cotton yield is a major breeding goal for Chinese upland cotton. Lint percentage is an important yield component and a critical economic index for cotton cultivars, and raising the lint percentage has a close relationship to improving cotton lint yield. To investigate the genetic architecture of lint percentage, a diversity panel consisting of 355 upland cotton accessions was grown, and the lint percentage was measured in four different environments. Genotyping was performed with specific-locus amplified fragment sequencing (SLAF-seq). Twelve single-nucleotide polymorphisms (SNPs) associated with lint percentage were detected via a genome-wide association study (GWAS), in which five SNP loci distributed on chromosomes At3 (A02) and At4 (A08) and contained two major-effect QTLs, which were detected in the best linear unbiased predictions (BLUPs) and in more than three environments simultaneously. Furthermore, favorable haplotypes (FHs) of two major-effect QTLs and 47 putative candidate genes in the two linkage disequilibrium (LD) blocks of these associated loci were identified. The expression levels of these putative candidate genes were estimated using RNA-seq data from ten upland cotton tissues. We found that Gh_A02G1268 was very highly expressed during the early fiber development stage, whereas the gene was poorly expressed in the seed. These results implied that Gh_A02G1268 may determine the lint percentage by regulating seed and fiber development. The favorable QTL alleles and candidate genes for lint percentage identified in this study will have high potential for improving lint yield in future Chinese cotton breeding programs

    Deficient O-GlcNAc Glycosylation Impairs Regulatory T Cell Differentiation and Notch Signaling in Autoimmune Hepatitis

    Get PDF
    Post-translational modifications such as glycosylation play an important role in the functions of homeostatic proteins, and are critical driving factors of several diseases; however, the role of glycosylation in autoimmune hepatitis is poorly understood. Here, we established an O-GlcNAc glycosylation-deficient rat model by knocking out the Eogt gene by TALEN-mediated gene targeting. O-GlcNAc glycosylation deficiency overtly aggravated liver injury in concanavalin-A induced autoimmune hepatitis, and delayed self-recovery of the liver. Furthermore, flow cytometry analysis revealed increased CD4+ T cell infiltration in the liver of rats with O-GlcNAc glycosylation deficiency, and normal differentiation of regulatory T cells (Tregs) in the liver to inhibit T cell infiltration could not be activated. Moreover, in vitro experiments showed that O-GlcNAc glycosylation deficiency impaired Treg differentiation to inhibit the Notch signaling pathway in CD4+ T cells. These finding indicate that O-GlcNAc glycosylation plays a critical role in the activation of Notch signaling, which could promote Treg differentiation in the liver to inhibit T cell infiltration and control disease development in autoimmune hepatitis. Therefore, this study reveals a regulatory role for glycosylation in the pathogenesis of autoimmune hepatitis, and highlights glycosylation as a potential treatment target

    Hepatocyte growth factor enhances death receptor-induced apoptosis by up-regulating DR5

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatocyte growth factor (HGF) and its receptor c-MET are commonly expressed in malignant gliomas and embryonic neuroectodermal tumors including medulloblastoma and appear to play an important role in the growth and dissemination of these malignancies. Dependent on cell context and the involvement of specific downstream effectors, both pro- and anti-apoptotic effects of HGF have been reported.</p> <p>Methods</p> <p>Human medulloblastoma cells were treated with HGF for 24–72 hours followed by death receptor ligand TRAIL (Tumor necrosis factor-related apoptosis-inducing ligand) for 24 hours. Cell death was measured by MTT and Annexin-V/PI flow cytometric analysis. Changes in expression levels of targets of interest were measured by Northern blot analysis, quantitative reverse transcription-PCR, Western blot analysis as well as immunoprecipitation.</p> <p>Results</p> <p>In this study, we show that HGF promotes medulloblastoma cell death induced by TRAIL. TRAIL alone triggered apoptosis in DAOY cells and death was enhanced by pre-treating the cells with HGF for 24–72 h prior to the addition of TRAIL. HGF (100 ng/ml) enhanced TRAIL (10 ng/ml) induced cell death by 36% (<it>P </it>< 0.001). No cell death was associated with HGF alone. Treating cells with PHA-665752, a specific c-Met receptor tyrosine kinase inhibitor, significantly abrogated the enhancement of TRAIL-induced cell death by HGF, indicating that its death promoting effect requires activation of its canonical receptor tyrosine kinase. Cell death induced by TRAIL+HGF was predominately apoptotic involving both extrinsic and intrinsic pathways as evidenced by the increased activation of caspase-3, 8, 9. Promotion of apoptosis by HGF occurred via the increased expression of the death receptor DR5 and enhanced formation of death-inducing signal complexes (DISC).</p> <p>Conclusion</p> <p>Taken together, these and previous findings indicate that HGF:c-Met pathway either promotes or inhibits medulloblastoma cell death via pathway and context specific mechanisms.</p
    • …
    corecore