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Abstract

Background: Male sterility is a common phenomenon in flowering plant species, and it has been successfully
developed in several crops by taking advantage of heterosis. Using space mutation breeding of upland cotton, a
novel photosensitive genetic male sterile (PGMS) mutant was isolated. To take advantage of the PGMS lines in
cotton hybrid breeding, it is of great importance to study the molecular mechanisms of its male sterility.

Results: Delayed degradation of the PGMS anther tapetum occurred at different developmental stages as shown
by analysis of anther cross-sections. To gain detailed insights into the cellular defects that occurred during PGMS pollen
development, we used a differential proteomic approach to investigate the protein profiles of mutant and wild-type
anthers at the tetrad, uninucleate and binucleate pollen stages. This approach identified 62 differentially expressed
protein spots, including 19 associated with energy and metabolic pathways, 7 involved with pollen tube growth, 5
involved with protein metabolism, and 4 involved with pollen wall development. The remaining 27 protein spots were
classified into other functional processes, such as protein folding and assembly (5 spots), and stress defense (4 spots).
These differentially expressed proteins strikingly affected pollen development in the PGMS mutant anther and resulted
in abnormal pollen grain formation, which may be the key reason for its male sterility.

Conclusions: This work represents the first study using comparative proteomics between fertile and PGMS cotton
plants to identify PGMS-related proteins. The results demonstrate the presence of a complicated metabolic network
in anther development and advance our understanding of the molecular mechanisms of microgamete formation,
providing insights into the molecular mechanisms of male sterility.

Background

Male sterility is a widespread phenomenon described in
over 150 flowering plant species [1]. There are two major
types of male-sterile plants, those exhibiting cytoplasmic
male sterility (CMS) and those exhibiting genetic male
sterility (GMS). Because of its important role in the use
of hybrid vigor, there are many reports on the traits
associated with male sterility, especially in rice [2-4].
CMS is a maternally inherited trait, characterized by a
mitochondrial energy deficiency, CMS protein cytotoxicity
and premature tapetal programmed cell death (PCD) [3].

* Correspondence: yu@cricaas.com.cn

'College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi
Province, China

“State Key Laboratory of Cotton Biology, Institute of Cotton Research,
Chinese Academy of Agricultural Sciences, Anyang 455000, Henan Province,
China

Full list of author information is available at the end of the article

( ) BiolVled Central

Wild Abortive CMS (CMSWA), a well-studied CMS line,
has been exploited to produce the majority of “threeline”
rice hybrids since the 1970s in China [5]. In the CMS-WA
line WA352, a new mitochondrial gene confers the CMS-
WA phenotype because its protein interacts with the
nuclear-encoded mitochondrial protein COX11. WA352
accumulates preferentially in the tapetum of the anther,
thereby inhibiting COX11 function in peroxide metabol-
ism, triggering premature tapetal PCD and consequent
pollen abortion [3].

Photosensitive genetic male sterile (PGMS) is a special
type of GMS in which pollen fertility is regulated by
day-length, and PGMS mutants are ideal female parents
in hybrid production. Nongken 58S, a spontaneously
occurring mutant of japonica rice cultivar Nongken 58,
is completely sterile under long-day conditions, whereas
its fertility varies from partial to full under short-day
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conditions [6]. Premature tapetum degeneration has been
proposed to be a major reason for this variation in fertility
[2,7]. The carbon starved anther (csa) mutant, another
type of PGMS mutant, displays male sterility under short-
day conditions but is fertile under long-day conditions.
CSA has the key role in regulating the sugar partitioning
that is required for rice anther development and pollen
maturation [8]. Thus, under short-day conditions, the csa
mutation leads to reduced assimilate allocation, resulting
in male sterility. However, this mutation was partially res-
cued in csa plants under long-day conditions, as indicated
by increased fertility [4]. It is of great importance to over-
come the problems in the current hybrid rice systems with
these studies, and the clearly understanding of CMS and
GMS mechanisms in rice will greatly benefit large-scale
crop breeding programs [9].

Upland cotton (Gossypium hirsutum L.) is an important
economic crop that is used mainly for producing textile
fiber. It has strong heterosis in boll number, boll weight,
and seed cotton vyield, and hybrid seeds are widely
produced in India and China [10]. Using space mutation
breeding of upland cotton, we previously isolated the
novel PGMS mutant CCRI9106 (MT), which is male ster-
ile under long-day conditions and fertile under short-day
conditions and expresses a virescent marker [11]. To take
advantage of the PGMS lines in hybrid breeding, it is
important to study their molecular mechanisms. Tran-
scriptome profiling analyses of anthers in MT and wild-
type (WT) lines indicates that the ubiquitin-proteasome
system is induced in MT uninucleate pollen (UNPs) under
long-day conditions. This induction is likely to cause the
degradation of pollen proteins, resulting in male sterility
[11]. Whereas proteins are the main effectors of most
cellular functions, there is an information gap in how the
genome, the transcriptome and cellular processes are
related because of posttranslational modifications, such as
phosphorylation and glycosylation [12]. Thus, to better
understand sterility mechanisms in cotton, it is important
to conduct proteomic studies of MT and WT anthers.

Proteomics is an essential tool for elucidating gene
functions and interactions. It has been widely used to
reveal changes in protein expression levels between sterile
and fertile anthers in several plants, and the resulting data
have been used to explain plant sterility mechanisms. The
application of proteomic technology has identified several
proteins in rice that are correlated with male sterility and
that have roles in protein synthesis, signal transduction,
cell death and carbohydrate metabolism [13]. In tomato, a
proteomic analysis between wild-type and 7B-1 male-
sterile mutant anthers revealed that the proteasome and
5B protein, which have potential roles in tapetum degen-
eration, are down-regulated in the male-sterile mutant.
Cystatins, regulators of endogenous proteolytic activities
during seed maturation and germination and in PCD,
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were up-regulated in male-sterile mutants [14]. Another
proteomic analysis showed that proteins associated with
carbohydrate and energy metabolism, photosynthesis and
flavonoid synthesis, which might also have roles in pollen
development, were all down-regulated in the CMS anthers
of Brassica napus [15]. A differential proteomic studies
of the GMS line and fertile line anthers of upland
cotton found that several carbohydrate metabolism-
and photosynthesis-related enzymes cytosolic ascorbate
peroxidase 1 and glutaminyl-tRNA synthetase at lower
levels in the mutant anthers, which may play important
role in pollen development [16]. Furthermore, other
proteomic studies have been carried out in the male sterile
8 anthers of Zea mays [17], YX-1 male-sterile mutant
anthers of wolfberry [18], and MES-induced male sterility
in rapeseed [19]. To date, researches have made great
progress in elucidating the mechanisms of male sterility.
However, to our knowledge, no proteomic study of cotton
PGMS anthers has been reported. The study of male ster-
ile lines will advance the use of hybrid vigor in cotton.

In the present study, two-dimensional gel electrophor-
esis (2-DE) coupled with MALDI-TOF-MS was used to
investigate differences between the protein profiles of MT
and WT anthers during three key developmental stages.
Sixty-six protein spots were differentially expressed, and
62 of them were successfully identified by MALDI-TOEF-
MS analysis. These proteins are involved in energy and
metabolic pathways, protein metabolism, pollen wall
development, pollen tube growth and other functional
processes. The comparison of protein profiles between
WT and PGMS anthers is of critical significance in
understanding anther and pollen development and will
provide new insight into male sterility.

Results

WT and MT phenotypes under long-day conditions
Under the natural long-day conditions, MT and WT
flowered in mid-July. Compared with the WT flower
(Figure 1A), the MT flower was smaller and displayed
abnormal floral phenotypes with shorter filaments and
shriveled anthers (Figure 1B). Furthermore, the MT
anther did not dehisce, and no visible pollen grains could
be observed (Figure 1B).

To determine whether the MT could produce normal
pollen grains, anthers from MT and WT were expressed
using tweezers and stained with 2% TTC. Unlike WT
mature pollen (Figure 1C), the MT pollen grains were
aborted and could not be deeply stained by TTC, indi-
cating that they were not viable (Figure 1D). Also, MT
plants did not set seeds after self-crossing but did when
cross-pollinated with the WT. Consistent with our previous
study [11], genetic analysis showed that about one-quarter
of the F, progeny were sterile, whereas the remainder
displayed normal fertility, indicating that the sterility was
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Figure 1 Flower and pollen phenotypes of WT and PGMS MT cotton (Gossypium hirsutum L.). The flower and pollen phenotypes are
shown in A and C, respectively, for WT, and B and D, respectively, for MT.
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caused by a single recessive allele (fertile/sterile = 144:45;
x* =0.18 for 3:1, P <0.05). These results suggest that the
MT cannot produce viable pollen and is male sterile.

Anther development
To gain more detailed insights into the cellular defects
occurring during pollen development in the MT, cross-
sections of anther samples from the WT and MT were
examined at different developmental stages determined
by flower bud length [20,21]. No cytological differences
in the anther tissues prior to the tetrad stage were
observed between MT and WT. The pollen mother cells
(PMCs; flower bud length, ~3—4 mm) underwent meiosis
(Figure 2A,G), resulting in the generation of tetrads (flower
bud length, ~4.5-5 mm), surrounded by the dense tapetum
(Figure 2B, H). Then, the unicellular microspores were
released and enlarged in both lines. Cytological abnormal-
ities first appeared in the MT in the tapetum cells at the
early UNP stage (flower bud length, ~5-5.5 mm). During
this stage, the tapetum in the WT began to degenerate
(Figure 2C), thus supplying nutrients to the microspore,
which is essential for microspore development. In con-
trast, the tapetum failed to degenerate in the M T, which
appeared to have smaller microspores (Figure 2I).

The tapetum continued to degenerate, and little remained
in the locule (Figure 2D) at the late UNP stage (flower bud

length, ~5.5-6 mm). This was totally different from what
occurred in the MT anther, in which the tapetum disap-
peared slowly and was still mostly present at the same
stage (Figure 2J). As a consequence, during the BNP
stage (flower bud length, ~10 mm for WT and 9 mm
for MT), the MT pollen grains failed to accumulate
storage materials, and the microspores lacked cytoplasm
and were irregular in shape (Figure 2K). In contrast,
the WT microspores were full of cytoplasm and were a
regular round shape (Figure 2E). At flowering stage, the
endothecium expanded and the anther dehisced to
release mature pollen grains in the WT (Figure 2F). Con-
sistent with the previous observations, the MT anther was
shriveled and did not dehisce, resulting in an aborted
pollen release (Figure 2L).

Total sugar content measurement

Because of no substances formed in MT pollen grains
(Figure 2L) and altered protein expression patterns in
the carbohydrate metabolism pathway in MT plants as
compared with WT plants (Table 1), we hypothesized
that the MT anthers may have defects in sugar accumu-
lation and starch synthesis. In the WT anthers, the total
soluble sugar content increased from the TTP to the UNP
stage, declined during the BNP stage and significantly in-
creased at the mature pollen stage (1 day before flowering)
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Figure 2 Cross-sections of anthers from wild-type (WT) and PGMS mutant (MT) cotton (Gossypium hirsutum L.) at different developmental
stages. Cross-sections of WT and MT anthers at the (A, G) meiotic stage (MC), (B, H) TTP stage, (C, 1) early UNP stage, (D, J) late UNP stage, (E, K)

BNP stage and (F, L) flowering stage are shown. The red arrows (C, I) indicate the degraded tapetum in the WT and the entire tapetum in the MT. The
white arrows (D, J) indicate the residual tapetum in the WT and condensed tapetum in the MT. Bars =50 um in (A) to (D) and (G) to (J), and 100 um
in E, F, Kand L. E, epidermis; En, endothecium; Mc, mother cells T, tapetum; Tds, tetrads; Ms, microspore; DT, degraded tapetum; ET, entire tapetum;
RT, residual tapetum; CT, condensed tapetum; Pg, pollen grain; DA, dehisced anther; and InA, indehisced anther.

before decreasing again at flowering (Figure 3A, Additional
file 1). Compared with the WT, there was no difference in
the total soluble sugar content in the MT anther at the
TTP stage; however, it was significantly lower at later devel-
opmental stages (Figure 3A, Additional file 1). Moreover,
the WT pollen contained an abundant amount of starch,
as indicated by dark staining with I,-KI (Figure 3B). In
contrast, the MT pollen was only lightly stained by I,-KI
(Figure 3C), indicating limited starch synthesis. These
results suggest that the altered gene expression patterns
in the carbohydrate metabolism pathway cause a reduced
accumulation of total sugars and limited starch synthesis
in MT anthers, which could be responsible for male
sterility.

Proteomic analysis

As discussed above, the abnormality was firstly observed
at UNP stage between the MT and WT and it was entirely
different at BNP stage. Therefore, we collected anther
samples at the TTP (flower bud length, 4.5-5 mm), UNP
(flower bud length, 5.5-6 mm) and BNP (flower bud
length, 10 mm for WT and 9 mm for MT) stages from
MT and WT buds for proteomic analyses to evaluate
pollen development. Multiple 2-DE gels of the MT and

WT at the TTP, UNP and BNP stages were acquired, and
the best gels were used as reference maps. A spot-to-spot
comparison and quantitative image analysis revealed that
66 proteins changed significantly (P <0.05) in relative
abundance by a minimum of a 1.5-fold change (the upper
and lower limits were set to 1.5 and 0.67, respectively) in
at least one stage (Additional file 2).

Among the 66 significantly changed spots, 20 were on
the TTP maps, including five less-intense spots and 15
more-intense spots in the MT TTP (Figure 4A, B and
Table 1). Twenty-three spots were identified on the UNP
maps, including 15 less-intense spots, 1 missing spot,
and 7 more-intense spots in the MT UNP (Figure 4C, D
and Table 1). The greatest differences appeared between
the BNP maps. A total of 46 spots were identified, includ-
ing 24 less-intense spots, 17 more-intense spots, 4 missing
spots, and 1 novel spot in the MT BNP (Figure 4E, F and
Table 1). Of the 66 differential spots, 49 spots were found
at one stage, 13 spots could be detected at two stages, and
5 spots were detected at all three stages. Furthermore,
three spots (spots 102, 122 and 166) could be detected
only in the WT anthers at BNP stages, suggesting the
functional importance of these spots in late anther and
pollen development.



Table 1 Differential protein spots between WT and MT anthers identified by MALDI-TOF-MS

Sp. Protein ID® Description© Sco.? The. MW Cov. Uniprot sim” Average ratio' Cel. Loc/

No* (kd)/pl®  rate’ D TTP  UNP  BNP  Loc  RC

Pollen wall development

137 Cotton_A_15299 Chalcone synthase 129 42.81/537 31.77% P30078 44.73 0.63 0.43 NDS S 4

140 Cotton_D_gene_10017980 Pyruvate dehydrogenase E1 196 39.51/5.89 39.50% P52904 83.38 0.77 0.47 0.42 M 3
component subunit beta

141 Cotton_D_gene_10001804 Pyruvate dehydrogenase E1 194 36.19/4.75 28.74% P52904 9042 1.00 0.48 0.50 _ 2
component subunit beta

145 Cotton_A_16390 Enoyl-[acyl-carrier-protein] reductase 145 41.86/8.18 47.06% P80030 836 0.43 0.07 - C 2

Protein metabolic

37 Cotton_A_32277 3-isopropylmalate dehydratase small subunit 139 27.59/6.95 27.03% Q8YX03 44.76 0.46 0.37 0.06 1

155 Cotton_D_gene_10025384 3-isopropylmalate dehydratase small subunit 282 27.57/6.87 25.10% Q8YX03 44.76 1.62 0.30 1.19 1

39 Cotton_A_02938 Proteasome subunit alpha type-2-B 208 33.39/8.57 39.07% Q8L4A7 93.64 093 0.96 1.58 _ 3

168 Cotton_A_23018 Proteasome subunit beta type-1 187 24.94/7.30 68.61% 082531 92.83 1.64 1.79 1.07 _ 3

63 Cotton_A_15704 26S protease regulatory subunit 6B 296 46.86/5.27 44.47% Q9SEl4 95.88 2.03 0.86 1.46 _ 3

Pollen tube growth

138 Cotton_A_04015 Probable pectinesterase/pectinesterase 175 35.79/5.06 24.30% Q9FJ21 5422 - - 0.47 _ 2
inhibitor 58

143 Cotton_A_28846 Probable pectinesterase/pectinesterase 192 76.15/6.76 23.18% QoFJ21 5422 - - 0.50 _ 2
inhibitor 58

103 Cotton_D_gene_10005074 Probable pectinesterase/pectinesterase 225 19.43/4.62 43.43% Q9FJ21 539 0.52 0.20 0.21 S 1
inhibitor 58

166 Cotton_D_gene_10000106 Pectinesterase PPME1 473 41.07/6.53 49.33% Q84WM7 55.21 - - NDS S 4

173 Cotton_D_gene_10000106 Pectinesterase PPME1 428 41.08/5.82 48.53% Q84WM7 5521 118 1.04 0.21 S 4

102 Cotton_A_28902 Anther-specific protein LAT52 135 19.74/4.66 43.43% P13447 4551 - - NDS S 1

122 Cotton_A_35804 Anther-specific protein LAT52 169 20.25/4.75 27.78% P13447 488 - - NDS S 1

Energy and metabolism process

38 Cotton_A_33732 Triosephosphate isomerase 136 27.73/517 46.09% Q9SKP6 89.84 1.20 0.96 0.03 _ 2

52 Cotton_A_22450 Malate dehydrogenase 119 35.90/6.51 32.23% Q08062 92.15 124 1.02 1.59 _ 5

164 Cotton_D_gene_10010185 Galactose oxidase 255 70.33/6.15 35.60% POCS93 2361 - - 0.21 S 3

165 Cotton_A_14520 Galactose oxidase 242 212.1/6.07 23.04% ITS2N3 24.26 - - 0.10 S 2

18 Cotton_A_28004 ATP synthase subunit 217 19.56/4.66 50.00% QIFT52 81.55 1.09 0.72 0.65 _ 3

48 Cotton_A_03219 NADH dehydrogenase [ubiquinone] flavoprotein 2 299 28.78/7.76 31.89% 022769 86.27 092 0.66 1.05 M 1

99 Cotton_D_gene_10017814 NADH dehydrogenase [ubiquinone] 222 19.30/4.57 40.36% P80266 86.49 0.95 0.61 0.59 _ 5
1 alpha subcomplex subunit 5

9 Cotton_D_gene_10034077 Deoxyuridine 5-triphosphate nucleotidohydrolase 411 1842/6.11 72.16% Q9STG6 79.88 1.64 0.95 2.24 _ 4
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Table 1 Differential protein spots between WT and MT anthers identified by MALDI-TOF-MS (Continued)

10

32

43
55
56
57
58
69
70
74
85

Cotton_D_gene_10034077

Cotton_D_gene_10028012

Cotton_A_19267
Cotton_A_33551
Cotton_D_gene_10035451
Cotton_D_gene_10028579
Cotton_D_gene_10008718
Cotton_A_16872
Cotton_A_16872
Cotton_D_gene_10014349
Cotton_D_gene_10036599

Protein folding and assembly

20
59
71
91
124

Cotton_A_13598
Cotton_A_16089
Cotton_A_21989
Cotton_D_gene_10037266
Cotton_A_18176

Stress defense

126
100
170
171

Cotton_D_gene_10025297
Cotton_A_23038
Cotton_A_23038
Cotton_A_23038

Other functions

2

3

23
31
34
35
44
51
83

Cotton_D_gene_10029341
Cotton_D_gene_10029341
Cotton_A_35766
Cotton_D_gene_10012588
Cotton_D_gene_10010187
Cotton_A_02073
Cotton_A_28411
Cotton_A_33743
Cotton_A_17250

Deoxyuridine 5-triphosphate
nucleotidohydrolase

Succinyl-CoA ligase
[ADP-forming] subunit beta

Probable 6-phosphogluconolactonase 4
Caffeic acid 3-O-methyltransferase
S-adenosylmethionine synthase
S-adenosylmethionine synthase 1
S-adenosylmethionine synthase 2
Probable aldo-keto reductase 1
Probable aldo-keto reductase 1
Probable mannitol dehydrogenase

Probable cinnamy! alcohol dehydrogenase 9

23.6 kDa heat shock protein

Protein disulfide-isomerase

Elongation factor Tu

17.3 kDa class Il heat shock protein
Hsp70 nucleotide exchange factor FES1

L-ascorbate peroxidase 1

Aldehyde dehydrogenase family 2 member B4
Aldehyde dehydrogenase family 2 member B4
Aldehyde dehydrogenase family 2 member B4

Glycine-rich RNA-binding protein
Glycine-rich RNA-binding protein
Pathogenesis-related protein 5

Nuclear migration protein nudC

Probable lactoylglutathione lyase

Soluble inorganic pyrophosphatase 1
Probable rhamnose biosynthetic enzyme 1
Polygalacturonase QRT3
Alpha-1,4-glucan-protein synthase 1

86.6

137

726

299
226
251
292

151
96.6

220
284
459
11
237

295
129
191
559

373
335

210
82.1
706
202
281

86.7

18.42/6.11

4563/6.78

35.31/6.96
40.74/5.63
43.49/5.59
4345/5.77
43.51/5.77
49.05/8.27
49.05/8.27
39.52/6.08
39.57/5.67

2348/5.22
55.70/5.06
49.46/6.62
17.56/6.02
40.89/4.93

44.29/6.09
58.17/7.25
58.17/7.25
58.17/7.25

17.13/84

17.13/84

24.02/4.28
33.16/4.87
40.25/7.53
32.32/6.38
33.98/5.79
52.62/5.75
12.58/5.55

38.64%

55.11%

24.16%
26.49%
67.43%
56.23%
60.56%
17.46%
17.69%
22.80%
22.84%

55.77%
38.99%
53.20%
66.67%
34.95%

41.79%
28.63%
29.57%
48.02%

81.07%
77.51%
16.07%
38.75%
40.56%
32.87%
3567%
31.38%
34.86%

QOSTG6

Q84LB6

A273C4
P46484
Q8GTLS
QOAT56
Q9AT55
C6TBN2
C6TBN2
Q9ZRF1
P42734

Q96331
QoXF61
Q97191
082013
Qov4C4

Q05431
Qosue3
QosuU63
Qosue3

Q03878
Q03878
P28493
035685
Q8W593
QILXC9
Q9SYM5
049432
QosC19

79.88

87.47

7381
81.35
974

96.95
97.96
66.57
66.57
76.14
79.89

62.15
7532
85.93
7761
36.61

7449
77.82
77.82
77.82

84.15
84.15
63.64
61.18
7861
80.07
82.31
63.52
96.3

1.62

1.69

1.54
2.00
1.26

0.80
1.04
093
0.85
2.24

1.55
1.52

1.65
0.80

091
141

0.94
1.92
1.53
1.03
097
2,92

0.92

0.77

0.90
0.87
1.35

0.92
0.99
0.90
1.82
2.1

0.93
0.65
145
146

1.61

1.51
1.15
1.08
0.88
0.86
1.12
092

1.88

0.61
0.60
2.08
1.52

= £ Z

w A W ow NN NN

N N S}

W W W W L~ NN

06€:¥L (710T) AbBojorg 3ubjd DWG v 32 NI

91 Jo 9 abeyd



Table 1 Differential protein spots between WT and MT anthers identified by MALDI-TOF-MS (Continued)

86 Cotton_D_gene_10037393 Profilin
97 Cotton_A_29462
106 Cotton_A_35377

Leucine-tRNA ligase
Putative pinene synthase
117 Cotton_D_gene_10024340 Phosphoglycolate phosphatase

156 Cotton_A_00485 Bifunctional monodehydroascorbate

reductase and carbonic anhydrase nectarin-3
157 Cotton_A_00484
174 Cotton_A_12497

Nacrein-like protein C1
Alpha-1,4-glucan-protein synthase
19 Cotton_D_gene_10038772 Uncharacterized protein

175 Cotton_D_gene_10017750 Uncharacterized protein

233
75.1
63.3
96.9
164

104
130
715
330

14.41/5.48
111.1/7.00
43.85/7.38
27.67/457
28.06/6.35

24.05/6.17
41.75/6.65
10.81/4.81
18.36/5.88

42.86%
20.18%
32.89%
31.73%
27.24%

28.77%
43.29%
57.29%
37.74%

049894
Q25415
PoCvo7
Q5PLX6
Q84UV8

AOZSF6
P85413

83.46
60.18
47.09
3647
4167

54.05
93.55

091
1.07

1.05

1.03
1.06
0.83

0.88
1.14
1.71

0.35
0.66
0.18
0.64
0.62

0.28
0.35
1.97
NDF

- w A~ NN

N W N

?Spot No corresponding to spots in protein maps.

PProtein ID of the matched protein from the Cotton Genome Project (CGP, Institute of Cotton Research of CAAS) database (http://cgp.genomics.org.cn/page/species/indexjsp). The IDs started by “Cotton_A" were
sequences from Gossypium arboretum genome, and “Cotton_D_gene” represent Gossypium raimondii genome.

“Description of the protein in UniProtKB.

d4Score obtained from Mascot for each match, and the cutoff was 62.

*Theoretical molecular mass and isoelectric point.

fCoverage rate, percentage of predicated protein sequence covered by matched sequences.
9UniProt ID of the homolog in UniProtKB.

"Similarity between the identified protein and its homolog in UniProtKB.

‘Average ratio is a ratio of the protein spots %volume ratio between the MT and WT. Ratios marked by black and italic showed p-value < 0.05 by Student’s t-test. “-":

in the sterile MT map, NDF: not detectable in the fertile WT map.

ICellular locations predicting used TargetP 1.1 Server. Loc is the locations. C, Chloroplast, M, Mitochondrion, S, Secretory pathway,

strongest prediction and 5 reliability classes.

o
—

Any other location. RC, Reliability Class, from 1 to 5, where 1 indicates the

not detectable in both maps, NDS: not detectable
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Figure 3 Total soluble sugar content in anthers and starch staining of pollen grains from wild-type (WT) and PGMS mutant (MT) cotton
(Gossypium hirsutum L.). (A) The total soluble sugar content in different developmental stages. (B, C) Starch staining of (B) WT and (C) MT
pollen grains. Data represent the mean and standard deviation from three replications. *P < 0.05; **P < 0.01 according to Student’s t-test. The
exact values were shown in Additional file 1.

Identification and functional categorization of differentially
expressed proteins

We were able to manually excise all 66 significantly differ-
ent spots from the preparative Coomassie-stained 2-DE
gels for further identification by MALDI-TOF-MS ana-
lysis. Sixty-two protein spots, representing 56 distinct
proteins, were successfully identified by searching against
our cotton_AD_nr database (Additional file 3). Some
spots were identified as the same gene product. For ex-
ample, two spots (2 and 3) were identified as glycine-rich
RNA-binding protein, and two spots (166 and 173) were
identified as pectinesterase PPMEL1.

The identified spots are presented in Table 1, which
includes spot number, protein ID, protein names,
Mascot score, coverage rate, theoretical Mass/Isoelectric
Point, Swiss-Prot Protein ID, average ratio and cellular
location. The subcellular localization analysis predicted
that most of the proteins (34) would be localized to any
other locations. Additionally, 10 localized to chloroplasts,
11 to the secretory pathway, and 7 to mitochondria
(Table 1). The experimental Mr and pl predicted by
SDS-PAGE has an error of about 15% compared with
the theoretical value (Table 1 and Additional file 2),
suggesting that some proteins appeared to be the
partially degraded products of their intact proteins or
post-translation modified proteins. For most of the
identified proteins, there were functional annotations in
the databases; however, two proteins (represented by
spots 19 and 175) had no functional annotations. The
annotated proteins were functionally grouped into
seven categories (Table 1) by KAAS analysis according
to their biological and cellular function: (1) energy and
metabolic pathways, (2) pollen wall development, (3)
protein metabolism, (4) pollen tube growth, (5) protein
folding and assembly, (6) stress defense and (7) other
functional pathways.

Comparison with Arabidopsis pollen proteome

In order to get a better overview of the functionality,
proteins were matched against their closest Arabidopsis
homologues and grouped according to their predicted
functions (Additional file 4). This way, most cotton protein
accessions (50 of the 56 identified proteins) could be
assigned to an Arabidopsis homologue. And only 6 acces-
sions achieved poor matches (E-value>107°). This
supports the theory that most proteins with important
functions in pollen development could be detected in cot-
ton pollen and their altered expression may result in male
sterility. Furthermore, the Arabidopsis homologues of five
spots (spots 51, 83, 137, 166, 174; Additional file 5) have
been proved to affect in pollen development or pollen tube
growth. The altered expression pattern of these proteins
suggested that the pollen development was seriously dis-
turbed in MT anther, responsible for the male sterility.

Verification of differential expression via qRT-PCR

To verify our 2-DE results and examine whether the
differences in protein abundance were reflected at the
transcriptional level, the mRNA expression levels of six
coding genes (CHS, EACPR, PME1, APX1, RPT3 and
PAB2), which corresponded to differentially expressed
proteins, were analyzed by qRT-PCR. The spot inten-
sities of CHS and EACPR were higher in the WT than
in the MT at all three stages (TTP, UNP and BNP),
PME1 and APX1 were higher in the WT at the BNP
stage only (Figure 5A, Additional file 6). Meanwhile,
the qRT-PCR results indicated that all these four genes
had lower transcriptional expression level in MT anther
at these stages as well (Figure 5B, Additional file 6).
And both the RPT3 spot intensity and its transcription
showed higher expression level in the MT at the TTP and
BNP stages (Figure 5, Additional file 6). Taken together,
the transcript levels of the genes encoding these five
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Figure 4 Representative 2-DE images for total anther proteins of wild-type (WT) and PGMS mutant (MT) cotton (Gossypium hirsutum
L.) at the TTP, UNP and BNP stages. Silver-stained reference maps of the WT at TTP (A), MT at TTP (B), WT at UNP (C), MT at UNP (D), WT at
BNP (E) and MT at BNP (F). Each differential protein spot was marked with an arrow and number. The spots with lower intensities in the MT are
showed in (A), (C), and (E), and the spots with higher intensities are shown in (B), (D), and (F). The white arrows indicate unidentified spots.

proteins demonstrated similar trends. The PAB2 protein
spots showed a higher intensity in the MT at the TTP and
UNP stages (Figure 5A, Additional file 6), and the mRNA
levels showed a corresponding increase at the TTP stage
(Figure 5B, Additional file 6).

However, the transcript levels for PAB2 at the UNP
and BNP stages were inconsistent with the spot-to-spot
comparison results, showing no difference at the UNP
stage and an increased level at the BNP stage in the MT.
In addition, APX1 had different accumulation patterns
in the MT anther at the transcript and protein levels,
showing an increase in protein abundance from the
UNP to BNP stage but a decrease in transcript levels
(Figure 5, Additional file 6). This was not surprising be-
cause numerous posttranscriptional regulatory mechanisms

can cause mRNA levels to only partly correlate with protein
concentrations. Moreover, it was different in transcripts
and protein half-lives or translation-on-demand between
mRNA and protein levels [22]. Therefore, proteomic ana-
lyses are essential for identifying the final products respon-
sible for different cellular functions.

Discussion

In this work, the developmental differences between the
PGMS MT and WT anthers were compared by cytological
and proteomic analyses. Delayed tapetum degradation was
confirmed in MT anthers at the UNP stage. To acquire
information on the molecular mechanisms causing these
developmental differences, we further analyzed the pro-
teomes of MT and WT anthers at the TTP, UNP and BNP
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stages. Sixty-two differently expressed protein spots (rep-
resent 56 distinct proteins) were successfully identified.
Based on their annotated biological and cellular functions,
the 56 differentially expressed proteins could participate
in a range of processes during pollen development, includ-
ing energy and metabolic pathways, pollen wall develop-
ment, protein metabolic, pollen tube growth, and other
functional proteins. These results may help us to clarify
the mechanism of male sterility in PGMS mutant.

Delayed degeneration of the tapetum in MT anthers

Formation of the anther is initiated by periclinal divi-
sions in the hypodermal cells in the anther primordium.
After mitotic divisions, the final structure consists of
gametophytes surrounded by a series of cell layers,
which are the tapetum, middle cell layer, endothecium
and outer epidermis [23]. These layers, especially the
tapetum, play important roles in pollen development,
such as the production of the locular fluid and callase,
and the formation of exine precursors [24]. Tapetal
degeneration is induced through PCD during the late

developmental stage of the anther, and premature or
delayed degradation causes male sterility [25,26].

In our study, the tapetum of the WT anther started to
degenerate at the early UNP stage (Figure 2C), and little
remained in the locule at the BNP stage (Figure 2D).
However, the tapetum failed to degenerate in the MT
anthers at an appropriate stage (Figure 2I), and most still
remained at late UNP stage (Figure 2J). Because of the
delayed tapetum degradation in the MT anthers, no
enough nutrients were available for normal microspore
development. As a consequence, the MT pollen under-
went abnormal development, resulting in male sterility.

Arabidopsis homologues affected in pollen development

To find out how cotton pollen might differ from Arabi-
dopsis pollen, we compared the proteins in our study to
the proteins identified in pollen proteome of Arabidopsis
[27-29]. Fifty of the 56 identified proteins could be
assigned to an Arabidopsis homologue, indicating high
similarity of the proteomes. The difference may result
from the different samples used. In this study, the whole
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anther was sampled for protein extraction and identifica-
tion, not the separated pollen grains as the Arabidopsis
proteome. Chalcone synthase (CHS, spot 137) was sig-
nificantly down-regulated in MT anther in all three
stages (Table 1). Its Arabidopsis homologue AT4G34850
(LAP5 and LAP6) was absent in pollen proteome. LAP5
and LAP6 are male-organ-specific members and are
expressed in anthers coincident with the timing of exine
formation [30].

In Arabidopsis, many mutants are described that are
affected in pollen development and pollen tube growth. A
total of 215 genes have been surveyed by Till Ischebeck
et al. [31]. From these, we found five spots to have homo-
logues (E-value equal to or less than 107°) in our study.
Although the roles of these genes have not been discussed
in cotton anther, the high similarity suggested conserved
functions. Their changed expression pattern led to aber-
rant pollen development in MT anther, resulting in male
sterility. However, from the 56 proteins identified, only
5 homologues have been described so far in Arabidopsis
mutant studies, leaving tremendous room for future
pollen research.

Energy and metabolism processes

In higher plants, the development of the male gameto-
phyte is a well-programmed and elaborate process [32],
which may require more genes expression. For example,
compared with other organs, more than 20,000 genes
have been detected as expressing in cotton anthers [33].
To accomplish this complex process, numerous proteins
are associated with energy and metabolism in anther
development. It has been well studied in Arabidopsis
thaliana. For example, of the proteins identified on the
2-DE reference proteome maps for mature pollen of
Arabidopsis thaliana, ~40% are predicted to function in
metabolism and energy generation [27,28]. Except for
these 2-DE based proteomics analysis, the metabolism
and energy functional categories were also overrepre-
sented in a shotgun proteomics of Arabidopsis pollen [29].
Moreover, the tobacco proteome analysis from early to
late pollen development demonstrated that proteins
involved in primary metabolism and starch synthesis,
which were required for pollen tube growth [31]. These
suggested that energy and metabolism processes were
the most primary processes in pollen. Disordered expres-
sion of proteins in these processes may cause male sterility
[16,19]. In this study, ~31% (19) of the 62 spots identified
were implicated in energy and metabolism (Table 1). Their
up- or down-regulation may cause abnormal development
of the MT anthers.

In detail, two of the proteins identified here had func-
tions in carbohydrate metabolism (spot 38 representing
triosephosphate isomerase, and spots 164 and 165 repre-
senting galactose oxidase), two in energy generation
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(spot 18 representing ATP synthase, and spots 48 and 99
representing NADH dehydrogenase) and the others were
involved in metabolism processes. As the highest sink,
anthers need to obtain large amounts of sugars to sup-
port their early development, and at later stages pollen
maturation requires the accumulation of starch, which
functions as an energy reserve for germination, thus
serving as a marker of pollen maturity [8]. It has been
shown that changes in expression of carbon and energy
metabolism genes led to total soluble sugar content
decrease at the meiosis and UNP stages in the cotton
GMS mutant anthers [33]. In this study, because of the
altered expression levels of carbohydrate metabolism-
related genes, there was a strikingly reduced accumulation
of sugars in the MT anthers at the late developmental
stages (Figure 3A) and limited starch synthesis in the MT
mature pollen grains (Figure 3C). As expected, the WT
mature pollen grains (Figure 2F) stored a number of
substances (e.g., polysaccharides, proteins, lipids and hor-
mones) that place a high demand on energy and carbon
reserves for successful germination and tube growth [19].
But the MT pollen grains were nearly empty from late
UNP stage (Figure 2J). During anther development, there
is an increased demand for respiratory function and cellu-
lar energy in the form of ATP. Defective in ATP synthesis
may result in abnormal anther development with non-
functional pollens [16,34]. In this work, two proteins in
energy generation (spot 18 representing ATP synthase,
and spots 48 and 99 representing NADH dehydrogenase)
were significantly reduced in MT anthers, suggesting that
the MT anthers were in an energy starved state.

These results suggest that the disordered gene expres-
sion in carbohydrate metabolism and energy germination
resulted in reduced accumulation of total sugars, a lack of
starch and other substances synthesis in the MT pollen
grains, thus providing critical information augmenting our
understanding of male sterility.

Pollen wall development

The pollen wall is formed of a number of layers, the
outer exine, the outer sculptured layer or sexine and the
inner nexine. The exine layer is formed principally of
sporopollenin, which is synthesized predominantly by
the tapetum and is an aliphatic polymer comprised of a
series of polymers derived from long-chain fatty acids,
phenylpropanoids and oxygenated aromatic rings [24].
Its primary roles are to provide structural and physical
support to the microspore cytoplasm and protection
from harsh conditions, such as prolonged desiccation,
high temperatures and ultraviolet light. It also facilitates
pollination by attracting vectors that prefer an elaborate
pollen outer wall [24]. In Arabidopsis, defects in sporo-
pollenin formation can cause male sterility [23]. In this
study, four proteins, represented by spots 137, 140, 141
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and 145, that are involved in sporopollenin formation
were found to be differentially expressed in the MT
anthers (Figure 4).

Chalcone synthase (CHS, spot 137), which is the first
committed enzyme in the biosynthesis of all flavonoids and
is essential for pollen development and the biosynthesis of
sporopollenin [35], was significantly reduced in all three
stages of MT anther development. In Arabidopsis, LAPS
and LAP6 encode anther-specific proteins with homology
to CHS and may play a role in the synthesis of pollen fatty
acids and phenolics found in exine. Mutations in either
gene result in abnormal exine patterning, whereas the lap5
lap6 double mutant produces pollen grains devoid of
exine, causing strong male sterility [30].

The proteins represented by spots 140, 141 and 145,
which were classified into the fatty acid synthesis path-
way, were significantly reduced as well in the MT. Fatty
acids are important components of sporopollenin. Muta-
tions that in fatty acid synthesis can cause impaired
pollen wall formation [36]. Enoyl-[acyl-carrier-protein]
reductase (EACPR, spot 145) is a subunit of the fatty acid
synthase complex that catalyzes de novo synthesis of fatty
acids. A reduced-function mutation of this gene in Arabi-
dopsis, mosaic deathl (modl), causes a marked decrease
in its enzymatic activity, impairing fatty acid biosynthesis
and decreasing the amount of total lipids [37].

The pyruvate dehydrogenase E1 component subunit
beta (PDH E1-B, spots 140 and 141) is essential for the
synthesis of sporopollenin precursors. Acetyl-CoA is
formed from pyruvate through a PDH complex in mito-
chondria, and the released acetyl-CoA is a substrate for
de novo fatty acid synthesis in plastids [24]. Antisense
inhibition of PDH_Ela-1 in the anther tapetum is suffi-
cient to cause male sterility, a phenocopy of the sugar beet
CMS [38]. The relatively reduced amount of sporopollenin
formation—related proteins in the MT anthers could con-
tribute to male sterility. Because fatty acids are the likely
components of sporopollenin, which contributes to the
formation of the protective pollen coat [24], reduced
amounts of these proteins may lead to abnormal pollen
coat formation in the MT. The MT pollen was irregularly
shaped (Figure 1K), which may have resulted from abnor-
mal sporopollenin formation. To uncover the detailed
changes, the structure of the pollen wall will be further
studied at high resolution microscope.

Protein metabolism

As a non-photosynthetic male reproductive organ, the
anther needs to obtain nutrients from source organs to
support pollen development and maturation, and proteins,
as well as amino acids, are important components of
pollen cytoplasm [11,39]. Proteasomes are important
proteases in eukaryotes and regulate many cellular pro-
cesses, including metabolism, cell cycle and the proteolysis
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of regulatory proteins. The altered expression levels of
proteasome-related enzymes in the tomato 7B-1 anthers
may affect meiosis in the microspore mother cells [14]. In
our previous research [11], several genes related to the
ubiquitin-proteasome system were up-regulated in the
MT anther at the UNP stage. Thus, under long-day condi-
tions, the ubiquitin-proteasome system is induced in the
MT at the UNP stage and likely leads to protein degrad-
ation. With insufficient protein and amino acid levels, the
cytoplasm of MT pollen grains is likely to break down
gradually, and the pollen grains are likely to lose activity,
resulting in male sterility [11].

In this study, the proteolytic enzymes proteasome
subunit o type-2-B (spot 39), proteasome subunit beta
type-1 (spot 168) and 26S protease subunit 6B homolog
(spot 63) (Figure 4), were up-regulated in the MT and one
amino acid biosynthesis—related protein, 3-isopropylmalate
dehydratase small subunit (spots 37 and 155), was down-
regulated in the MT anthers. These changes may cause
reduced protein and amino acid levels in MT pollen grains,
although the exact mechanism for this effect is still unclear.
Consistent with the previous study, the induced degrad-
ation of cytoplasmic proteins in the pollen of the MT may
be another reason for its male sterility.

Pollen tube growth

Pollen germination, along with pollen tube growth, is an
essential process in the reproduction of flowering plants.
The wall of the pollen tube is composed of a single layer
of pectin, and pectin methylesterases (PMEs) likely play
a central role in pollen tube growth and the determin-
ation of pollen tube morphology [40]. The function of
PMEs in pollen tube growth and pollen germination has
been well studied in several plant species. AtPPME] is a
pollen-specific gene, and its protein is found only in the
mature pollen grains and growing pollen tubes. After
germinating and being cultured in vitro, pollen tubes of
atppmel mutant pollen grains have a curved, irregular
morphology and are dramatically stunted [41].

In plants, PME activities are regulated by either differ-
ential expression or posttranslational modification by
specific PME inhibitor proteins (PMEIs) [42]. It has been
suggested that AtPMEI2 accumulates exclusively at the
pollen tube apex and regulates pollen tube wall stability
by locally inhibiting PME activity [43]. Additionally, the
ectopic expression of a BoPMEI] antisense gene in Ara-
bidopsis suppresses expression of its orthologous gene,
Atlgl0770, resulting in pollen tube growth retardation,
partial male sterility, and reduced seed set [44].

LAT52 is also essential for pollen development, because
pollen grains that express antisense LAT52 RNA hydrate
and germinate abnormally and cannot achieve fertilization
[45]. Interestingly, all the three related proteins in this
analysis (represented by spots 166 and 173 for the PME;
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spots 103, 138 and 143 for the PMEI and spots 102 and
122 for LAT52) had lower expression levels in our MT
anther maps and extremely high expression levels in the
WT maps, especially at the BNP stage (Figure 4). We
believe that this change may reduce the accumulation of
pollen components for pollen tube growth, which leads to
pollen that could not germinate after maturation, resulting
in nonviable pollen grains.

Other functional proteins

The 27 remaining proteins could be classified into other
diverse functional categories (Table 1). They have import-
ant roles in anther development as well, including five
proteins with roles related to protein folding and assem-
bly. The 23.6-kDa heat shock protein (HSP; spot 20), 17.3-
kDa HSP (spot 91), protein disulfide-isomerase (spot 59)
and elongation factor Tu (spot 71) were up-regulated in
MT anthers; however, HSP70 (spot 124) was down-
regulated. These proteins have been well studied and
are responsible for protein folding and assembly [46].
In this study, the different expression levels of HSPs
implied that protein folding and assembly are altered in
MT anthers, suggesting variations in protein translation
and post-translational modifications, which might lead
to aberrant anther development.

Stress defense—related proteins formed another func-
tional category that included L-ascorbate peroxidase (APX;
spots 126, Figure 4) and aldehyde dehydrogenase (ALDH;
spots 100, 170 and 171), which were down-regulated in the
MT. These proteins are important in detoxifying reactive
oxygen species damage during anther development in up-
land cotton [21]. Thus, the differential expression of these
proteins in MT anthers may unbalance the oxidation-
reduction process, which may play an important role in
anther and pollen development [18,21]. In addition, other
proteins with significantly altered expression levels may
also influence anther and pollen development. Further
studies are required to investigate the functions of these
proteins.

Conclusions

Male sterility is a common phenomenon in flowering
plant species. Using space mutational breeding, a novel
PGMS mutant line was developed and identified. The
anthers in the MT plants underwent delayed tapetum
degradation. To better understand the cellular defects
that occurred during pollen development in the MT, a
comparative proteomic approach was conducted, and 62
differentially expressed protein spots were identified
between the PGMS MT and WT anthers at three devel-
opmental stages. These proteins were involved in energy
and metabolic pathways, protein metabolism, pollen wall
development, pollen tube growth and other functional
processes. The differential expression of these proteins
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may strongly disturb pollen development in the MT
anther and cause abnormal pollen grain formation,
which may be the key reason for the sterility.

Delayed tapetum degradation may result in insufficient
nutrition supplying for microspore maturation. As a con-
sequence, the pollen wall underwent abnormal develop-
ment and failed in accumulation of pollen components for
pollen tube growth. Finally, nonviable pollen grains were
formed in the MT anther. Our results may be relevant for
many biological processes in anther and pollen develop-
ment and provide insight into the mechanisms behind
photosensitive male sterility in higher plants.

Methods

Plant growth and anther collection

Two G. hirsutum L. genotypes, a PGMS mutant CCR
19106 and its WT line, CCRI040029, were used in this
study. CCRI040029 was an elite upland variety bred in
our lab, and the mutant line, CCRI9106, was identified
by space mutation in 2010 [11]. They were grown in an
agronomic field in Anyang, Henan, P. R. China from
April to October. Thirty lines (8 m in length x 0.8 m in
width) were prepared for each genotype, and every 10
lines formed one replicate.

As in our previous study [21], during the anthesis
period, flower buds of different lengths were observed to
identify the pollen developmental stages and then were
sampled for anther collection every other day. Pollen
grains from each flower bud were expelled, dissolved in
mixed acids (chromic acid/nitric acid/hydrochloric acid,
15/10/5, v/v/v) and then stained by 2% iodine-potassium
iodide (I,-KI) or 2% 2,3,5-triphenyltetrazolium chloride
(TTC). They were then photographed using an Olympus
DP72 light microscope. To observe cross-sections, anthers
were fixed in formalin-aceto-alcohol (FAA) and dehy-
drated in an ethanol series. The samples were then
embedded in paraffin. Longitudinal sections were cut
using a Leica RM2265 ultramicrotome, stained using
safranin with a fast green counterstain and photographed
using the Olympus DP72 light microscope.

Additionally, anthers from both MT and WT were
collected during the tetrad pollen (TTP) period, as well
as from the early and late UNP, binucleate pollen (BNP),
mature pollen and flowering periods for further analysis.
The collected anthers were immediately fixed in FAA for
cross-sectioning or frozen in liquid nitrogen and stored
at —80°C until proteins, total sugar and mRNA extrac-
tions were performed.

Protein extraction and quantification

TCA-acetone method was selected for anther protein
extraction [47]. Protein extractions were performed
according to Pang et al. with minor modifications [48].
In brief, ~1.5 g of frozen anther was ground with 10%
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polyvinyl polypyrrolidone (w/w) in liquid nitrogen using a
mortar and pestle. The resulting fine powder was mixed
with 10% (w/v) trichloroacetic acid in cold acetone con-
taining 0.07% (w/v) 2-mercaptoethanol for at least 2 h and
subsequently centrifuged at 12,000 g for 1 h at 4°C. The
pellet was washed first with cold acetone containing 0.07%
(w/v) 2-mercaptoethanol and then with 80% cold acetone
and finally was suspended in lysis buffer (7 M urea, 2 M
thiourea, 4% CHAPS, 20 mM dithiothreitol, 2% EDTA-
free protease-inhibitor). The supernatant was centrifuged
at 120,000 g for 90 min at 4°C and used for further assays.
The concentration of the protein solution was determined
with the 2-D Quant Kit (GE Healthcare) with bovine
serum albumin as a standard. The supernatants were
stored at —80°C until required.

Two-dimensional gel electrophoresis

Two-dimensional gel electrophoresis (2-DE) was performed
as follows. Two technical and three biological replicates
were prepared for each stage (i.e., at least six gels for each
sample). Total anther proteins, 150 pg or 1.5 mg, were
visualized in silver- or Coomassie-stained (Coomassie
Brilliant Blue R-350; GE Healthcare) gels, respectively.
Isoelectric focusing was performed with the IPGphor
system (GE Healthcare). Immobiline pH 4 to 7 and 24-cm
linear DryStrips (GE Healthcare) were run at 30 V for 8 h,
50 V for 4 h, 100 V for 1 h, 300 V for 1 h, 500 V for 1 h,
1000 V for 1 h and 8000 V for 12 h using rehydration buf-
fer (8 M urea, 2% CHAPS, 20 mM DTT) containing 0.5%
(v/v) IPG Buffer (GE Healthcare). The second-dimension
SDS-PAGE was performed using 12.5% polyacrylamide
gels without a stacking gel in an Ettan DALTsix Electro-
phoresis Unit 230 (GE Healthcare). For silver-staining,
gels were stained with 0.25% (w/v) silver nitrate and visu-
alized by 0.004% (v/v) formaldehyde in 2.6% (w/v) sodium
carbonate. For CBB staining, gels were stained with 0.04%
(w/v) PhastGel Blue R (Coomassie Brilliant Blue R-350;
GE Healthcare) in 10% acetic acid and destained with 10%
acetic acid. Silver-stained gels were immediately scanned
at a resolution of 300 dots per inch using a PowerLook
2100XL (UMAX) and analyzed using ImageMaster
platinum 6.0. The relative volume (% volume) was used
to quantify and compare the spots. Spots with signifi-
cant changes, at least 1.5-fold up- or down-regulated at
P <0.05 (Additional file 1), were manually excised from
the CBB-stained gels.

MALDI-TOF-MS and database searching

Excised protein spots were analyzed using a Bruker
UltrafleXtreme MALDI-TOF/TOF mass spectrometer.
Monoisotopic peak masses were acquired in a mass
range of 500 to 3,500 Da. Five of the most intense ion
signals were selected as precursors for MS/MS acquisi-
tion. Based on the peptide mass fingerprinting results
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and the MALDI-TOF/TOF-MS analysis, sequence similar-
ity searches for protein identification were performed with
Mascot 2.3.02 software (Matrix Science, Boston, MA,
USA) using default parameters against our cotton_AD_nr
database. This database includes 38,460 sequences from
the Gossypium raimondii genome [49] and 43,097 from
the Gossypium arboreum genome [50], the putative con-
tributors of the D and A subgenomes, respectively, of the
G. hirsutum AD genome. If there was no significant
match, then the spot was searched against the UniProt
viridiplantae database (http://www.uniprot.org/, Release
2012_12), and the highest-scoring protein was reported.
The search variables were set as follows: one missed tryp-
sin cleavage, carbamidomethyl cysteine residues as a fixed
modification, methionine oxidation as a variable modifica-
tion, a peptide mass tolerance of 100 ppm and a fragment
ion mass tolerance of 0.4 Da.

Protein functional classifications

The differentially expressed proteins were functionally
categorized by the KEGG Automatic Annotation Server
(KAAS, http://www.genome.jp/tools/kaas/) using the
default parameters [51]. Then, they were classified into
different categories according to their predicted biological
functions. Their subcellular localizations were predicted
using the TargetP 1.1 Server (TargetP, http://www.cbs.dtu.
dk/services/TargetP/) with the default settings [52]. To
compare with Arabidopsis pollen proteome (3517 proteins
from Arabidopsis pollen proteome) [27-29], all proteins
in this study were blasted for the closest Arabidopsis
homologue with E-value < 107",

Quantitative real-time PCR (qRT-PCR)

Total RNA from anther samples was extracted using the
pBiozol Total RNA Extraction Reagent (BioFlux) accord-
ing to the manufacturer’s protocol. Reverse transcription
reactions were performed with SuperScriptlll reverse
transcriptase (Invitrogen, USA) following its protocol.
Reactions were carried out using SYBR Green PCR
Master Mix (Roche Applied Science, Germany) on an ABI
7500 real-time PCR system (Applied Biosystems, USA)
with three replicates. Reaction volumes were 25 pL. and
contained 12.5 pL. SYBR Green PCR Master Mix, 9.5 pL
deionized H,O, 1 pL primers and 2 pL. cDNA. Amplifica-
tion reactions were initiated with a pre-denaturing step
(95°C for 10 min), followed by denaturing (95°C for 10 s),
annealing (60°C for 35 s) and extension (72°C for 35 s) for
40 cycles. Data were processed using the 2°°““* method,
and the 18S rRNA was used as an endogenous reference
gene for data normalization, followed by normalization
against the TTP of WT. The primer pairs used for qRT-
PCR were designed based on the expressed sequence tag
sequences from our anther cDNA library [21]. The identi-
fied protein sequences were blasted against the cDNA
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library, and the best hit was selected for primer design
and qRT-PCR. The corresponding sequences and primers
are shown in Additional file 7.

Total sugar content measurement

Anthers were harvested and frozen at —-80°C. The sam-
ples were ground into fine powder in liquid nitrogen
using a mortar and pestle. Twenty milliliters of water
was added to the glass tubes containing 1 g of ground
anther tissue. The tubes were incubated at 100°C for
10 min and then centrifuged at 2,500 g for 5 min. A
2 mL solution containing glucose, fructose or galactose
was prepared. A 200 pg- mL™" glucose solution was used
as the standard for optimization. An anthrone colori-
metric method was adopted to determine the total sugar
content in the WT and male sterile MT anthers [33].
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