25 research outputs found
THE INTERPRETATION OF CHRISTIAN SYMBOLISM IN THE PAINTING OF THOMAS KINKADE
The work of Thomas Kinkade is the subject of a discussion about contemporary Christian art in general. The artist’s commercial success and the enduring popularity of his work have attracted the attention of both art historians and theologians. Among the issues discussed are the place of Christian art in modern mass culture, the role of religious symbolism in secular art, and its rethinking in connection with the spiritual needs of modern society. The most difficult question is the acceptability of the artist’s image of “the world without the Fall” in the context of the Christian worldview, which is the central theme in Kinkade’s landscapes. The article examines the most common points of view about these problems, analyzes possible approaches to the estimation of the artist’s creative heritage in the context of visual theology.Творчество Томаса Кинкейда является предметом дискуссии, затрагивающей современное христианское искусство в целом. Коммерческий успех художника и непреходящая популярность его работ привлекают внимание как искусствоведов, так и теологов. Среди обсуждаемых вопросов – место христианского искусства в современной массовой культуре, роль религиозной символики в секулярном изобразительном искусстве, её переосмысление в связи с духовными потребностями современного общества. Наиболее сложным представляется вопрос о допустимости в контексте христианского мировоззрения предлагаемого художником образа «мира без грехопадения», являющегося центральной темой в пейзажах Кинкейда. В статье рассматриваются наиболее распространённые точки зрения на указанные проблемы, анализируются возможные подходы к оценке творческого наследия художника в контексте визуальной теологии
Halo Excitation of He in Inelastic and Charge-Exchange Reactions
Four-body distorted wave theory appropriate for nucleon-nucleus reactions
leading to 3-body continuum excitations of two-neutron Borromean halo nuclei is
developed. The peculiarities of the halo bound state and 3-body continuum are
fully taken into account by using the method of hyperspherical harmonics. The
procedure is applied for A=6 test-bench nuclei; thus we report detailed studies
of inclusive cross sections for inelastic He(p,p')He and
charge-exchange Li(n,p)He reactions at nucleon energy 50 MeV. The
theoretical low-energy spectra exhibit two resonance-like structures. The first
(narrow) is the excitation of the well-known three-body resonance. The
second (broad) bump is a composition of overlapping soft modes of
multipolarities whose relative weights depend on
transferred momentum and reaction type. Inelastic scattering is the most
selective tool for studying the soft dipole excitation mode.Comment: Submitted to Phys. Rev. C., 11 figures using eps
The H states studied in the reaction and evidence of extremely correlated character of the H ground state
The extremely neutron-rich system H was studied in the direct
H transfer reaction with a 26
MeV secondary He beam. The measured missing mass spectrum shows a
resonant state in H at MeV relative to the H+ threshold.
The population cross section of the presumably -wave states in the energy
range from 4 to 8 MeV is
b/sr in the angular range . The
obtained missing mass spectrum is free of the H events below 3.5 MeV
( b/sr in the same angular
range). The steep rise of the H missing mass spectrum at 3 MeV allows to
show that MeV is the lower limit for the possible resonant state
energy in H tolerated by our data. According to paring energy estimates,
such a MeV resonance is a realistic candidate for the H ground
state (g.s.). The obtained results confirm that the decay mechanism of the
H g.s.\ (located at 2.2 MeV above the H+ threshold) is the
``true'' (or simultaneous) emission. The resonance energy profiles and the
momentum distributions of the sequential H \,\rightarrow \,
^5H(g.s.)+n\, \rightarrow \, ^3H+ decay fragments were analyzed by the
theoretically-updated direct four-body-decay and sequential-emission
mechanisms. The measured momentum distributions of the H fragments in the
H rest frame indicate very strong ``dineutron-type'' correlations in the
H ground state decay.Comment: 9 pages, 11 figure
Ecto-5′-nucleotidase and intestinal ion secretion by enteropathogenic Escherichia coli
Enteropathogenic Escherichia coli (EPEC) triggers a large release of adenosine triphosphate (ATP) from host intestinal cells and the extracellular ATP is broken down to adenosine diphosphate (ADP), AMP, and adenosine. Adenosine is a potent secretagogue in the small and large intestine. We suspected that ecto-5′-nucleotidase (CD73, an intestinal enzyme) was a critical enzyme involved in the conversion of AMP to adenosine and in the pathogenesis of EPEC diarrhea. We developed a nonradioactive method for measuring ecto-5′-nucleotidase in cultured T84 cell monolayers based on the detection of phosphate release from 5′-AMP. EPEC infection triggered a release of ecto-5′-nucleotidase from the cell surface into the supernatant medium. EPEC-induced 5′-nucleotidase release was not correlated with host cell death but instead with activation of phosphatidylinositol-specific phospholipase C (PI-PLC). Ecto-5′-nucleotidase was susceptible to inhibition by zinc acetate and by α,β-methylene-adenosine diphosphate (α,β-methylene-ADP). In the Ussing chamber, these inhibitors could reverse the chloride secretory responses triggered by 5′-AMP. In addition, α,β-methylene-ADP and zinc blocked the ability of 5′-AMP to stimulate EPEC growth under nutrient-limited conditions in vitro. Ecto-5′-nucleotidase appears to be the major enzyme responsible for generation of adenosine from adenine nucleotides in the T84 cell line, and inhibitors of ecto-5′-nucleotidase, such as α,β-methylene-ADP and zinc, might be useful for treatment of the watery diarrhea produced by EPEC infection
INFECTIOUS SALMON ANEMIA
The aim of this work consists in the analysis of modern scientific conceptions about infectious salmon anemia (ISA) etiologically linked with ISAV (infectious salmon anemia virus) (Orthomyxoviridae, Isavirus). ISA is deadly disease of Salmonidae fishes.Discussion. ISA began to extend actively among salmon breeding farms since the extremity of the XX century and poses nowadays serious threat of fishing industry as there are no not only anti-ISAV chemopreparates and effective vaccines, but also scientifically based ideas of ISAV ecology. In the offered review data on the discovery history, taxonomical status, virion morphology and genome structure as well as ecology of ISAV, clinical features, pathogenesis and laboratory diagnostics, actions in the epizootic foci for the prevention of further distribution and prophylaxis of ISA, arrangement for protection against salmon louses and utilized approaches to anti-ISAV vaccines development are discussed. There is very important that ISAV is capable to be transferred by salmon louses – pelagic crustaceans (Copepoda: Caligidae) that allows to classify ISAV as arbovirus ecological group which are transferred due to biological transmission by arthropods (copepods) to vertebrate animals (salmons). It is the only example known so far when representatives of Crustacea act as a vector for arboviruses.Conclusion. Investigation of ISAV ecology turns into one of "touchstones" allowing to judge technological readiness of mankind to master resources of the World Ocean
Exposure of volunteers to microgravity by dry immersion bed over 21 days results in gene expression changes and adaptation of T cells
The next steps of deep space exploration are manned missions to Moon and Mars. For safe space missions for crew members, it is important to understand the impact of space flight on the immune system. We studied the effects of 21 days dry immersion (DI) exposure on the transcriptomes of T cells isolated from blood samples of eight healthy volunteers. Samples were collected 7 days before DI, at day 7, 14, and 21 during DI, and 7 days after DI. RNA sequencing of CD3+T cells revealed transcriptional alterations across all time points, with most changes occurring 14 days after DI exposure. At day 21, T cells showed evidence of adaptation with a transcriptional profile resembling that of 7 days before DI. At 7 days after DI, T cells again changed their transcriptional profile. These data suggest that T cells adapt by rewiring their transcriptomes in response to simulated weightlessness and that remodeling cues persist when reexposed to normal gravity
Recommended from our members
The Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Quantifying Uncertainties in Atmospheric River Climatology
Atmospheric rivers (ARs) are now widely known for their association with high-impact weather events and long-term water supply in many regions. Researchers within the scientific community have developed numerous methods to identify and track of ARs—a necessary step for analyses on gridded data sets, and objective attribution of impacts to ARs. These different methods have been developed to answer specific research questions and hence use different criteria (e.g., geometry, threshold values of key variables, and time dependence). Furthermore, these methods are often employed using different reanalysis data sets, time periods, and regions of interest. The goal of the Atmospheric River Tracking Method Intercomparison Project (ARTMIP) is to understand and quantify uncertainties in AR science that arise due to differences in these methods. This paper presents results for key AR-related metrics based on 20+ different AR identification and tracking methods applied to Modern-Era Retrospective Analysis for Research and Applications Version 2 reanalysis data from January 1980 through June 2017. We show that AR frequency, duration, and seasonality exhibit a wide range of results, while the meridional distribution of these metrics along selected coastal (but not interior) transects are quite similar across methods. Furthermore, methods are grouped into criteria-based clusters, within which the range of results is reduced. AR case studies and an evaluation of individual method deviation from an all-method mean highlight advantages/disadvantages of certain approaches. For example, methods with less (more) restrictive criteria identify more (less) ARs and AR-related impacts. Finally, this paper concludes with a discussion and recommendations for those conducting AR-related research to consider
Resonant states in H : Experimental studies of the H(He,He) reaction
The extremely neutron-rich system H7 was studied in the direct H2(He8,He3)H7 transfer reaction with a 26 AMeV secondary He8 beam [Bezbakh et al., Phys. Rev. Lett. 124, 022502 (2020)PRLTAO0031-900710.1103/PhysRevLett.124.022502]. The missing mass spectrum and center-of-mass angular distributions of H7, as well as the momentum distribution of the H3 fragment in the H7 frame, were constructed. In addition, we carried out another experiment with the same beam but a modified setup, which was cross-checked by the study of the H2(Be10,He3)Li9 reaction. A solid experimental evidence is provided that two resonant states of H7 are located in its spectrum at 2.2(5) and 5.5(3)MeV relative to the H3+4n decay threshold. Also, there are indications that the resonant states at 7.5(3) and 11.0(3)MeV are present in the measured H7 spectrum. Based on the energy and angular distributions, obtained for the studied H2(He8,He3)H7 reaction, the weakly populated 2.2(5)-MeV peak is ascribed to the H7 ground state. It is highly plausible that the firmly ascertained 5.5(3)-MeV state is the 5/2+ member of the H7 excitation 5/2+-3/2+ doublet, built on the 2+ configuration of valence neutrons. The supposed 7.5-MeV state can be another member of this doublet, which could not be resolved in Bezbakh et al. [Phys. Rev. Lett. 124, 022502 (2020)PRLTAO0031-900710.1103/PhysRevLett.124.022502]. Consequently, the two doublet members appeared in the spectrum of H7 in the work mentioned above as a single broad 6.5-MeV peak