293 research outputs found
NIRT: gated transport through carbon nanotube membranes
Issued as final reportUniversity of California, Berkele
Recommended from our members
Ab Initio Studies of Coke Formation on Ni Catalysts During Methane Reforming
The atomic-scale processes that control the formation of carbon deposits on Ni catalysts in reforming applications are poorly understood. Ab initio Density Functional Theory calculations have been used to examine several key elementary steps in the complex network of chemical reactions that precedes carbon formation on practical catalysts. Attention has been focused on the disproportionation of CO. A comparative study of this reaction on flat and stepped crystal planes of Ni has provided the first direct evidence that surface carbon formation is driven by elementary reactions occurring at defect sites on Ni catalysts. The adsorption and diffusion of atomic H on several flat and stepped Ni surfaces has also been characterized experimentally
The Open DAC 2023 Dataset and Challenges for Sorbent Discovery in Direct Air Capture
New methods for carbon dioxide removal are urgently needed to combat global
climate change. Direct air capture (DAC) is an emerging technology to capture
carbon dioxide directly from ambient air. Metal-organic frameworks (MOFs) have
been widely studied as potentially customizable adsorbents for DAC. However,
discovering promising MOF sorbents for DAC is challenging because of the vast
chemical space to explore and the need to understand materials as functions of
humidity and temperature. We explore a computational approach benefiting from
recent innovations in machine learning (ML) and present a dataset named Open
DAC 2023 (ODAC23) consisting of more than 38M density functional theory (DFT)
calculations on more than 8,400 MOF materials containing adsorbed and/or
. ODAC23 is by far the largest dataset of MOF adsorption calculations at
the DFT level of accuracy currently available. In addition to probing
properties of adsorbed molecules, the dataset is a rich source of information
on structural relaxation of MOFs, which will be useful in many contexts beyond
specific applications for DAC. A large number of MOFs with promising properties
for DAC are identified directly in ODAC23. We also trained state-of-the-art ML
models on this dataset to approximate calculations at the DFT level. This
open-source dataset and our initial ML models will provide an important
baseline for future efforts to identify MOFs for a wide range of applications,
including DAC
Computational investigation on CO2 adsorption in titanium carbide-derived carbons with residual titanium
We develop a new approach for modeling titanium carbide derived-carbon (TiC-CDC) systems with residual titanium by the generation of modified atomistic structures based on a silicon carbide derived-carbon (SiC-CDC) model and the application of weighted combinations of these structures. In our approach, the original SiC-CDC structure is modified by (i) removing carbon, (ii) adding carbon and (iii) adding titanium. The new atomic scale carbide-derived carbon (CDC) structures are investigated using classical molecular dynamics simulations, and their pure CO adsorption isotherms are calculated using grand canonical Monte Carlo simulations. The system of TiC-CDC with residual titanium is modeled as weighted combinations of pure carbon CDC structures, CDC structures with titanium and a TiC crystalline structure. Our modeling is able to produce both structural properties and adsorption isotherms in accordance with experimental data. The fraction of different models in the systems successfully reflects the structural differences in various experimental TiC-CDC samples. The modeling also suggests that in partially etched TiC-CDC systems, the titanium that may be accessible to CO gas at the transitional interface may provide significant interaction sites for CO and may lead to more efficient overall gas adsorption
Advances, Updates, and Analytics for the Computation-Ready, Experimental Metal–Organic Framework Database: CoRE MOF 2019
Over 14 000 porous, three-dimensional metal–organic framework structures are compiled and analyzed as a part of an update to the Computation-Ready, Experimental Metal–Organic Framework Database (CoRE MOF Database). The updated database includes additional structures that were contributed by CoRE MOF users, obtained from updates of the Cambridge Structural Database and a Web of Science search, and derived through semiautomated reconstruction of disordered structures using a topology-based crystal generator. In addition, value is added to the CoRE MOF database through new analyses that can speed up future nanoporous materials discovery activities, including open metal site detection and duplicate searches. Crystal structures (only for the subset that underwent significant changes during curation), pore analytics, and physical property data are included with the publicly available CoRE MOF 2019 database
Acquired Resistance to KRAS (G12C) Inhibition in Cancer
BACKGROUND: Clinical trials of the KRAS inhibitors adagrasib and sotorasib have shown promising activity in cancers harboring KRAS glycine-to-cysteine amino acid substitutions at codon 12 (KRAS(G12C)). The mechanisms of acquired resistance to these therapies are currently unknown.
METHODS: Among patients with KRAS(G12C) -mutant cancers treated with adagrasib monotherapy, we performed genomic and histologic analyses that compared pretreatment samples with those obtained after the development of resistance. Cell-based experiments were conducted to study mutations that confer resistance to KRAS(G12C) inhibitors.
RESULTS: A total of 38 patients were included in this study: 27 with non-small-cell lung cancer, 10 with colorectal cancer, and 1 with appendiceal cancer. Putative mechanisms of resistance to adagrasib were detected in 17 patients (45% of the cohort), of whom 7 (18% of the cohort) had multiple coincident mechanisms. Acquired KRAS alterations included G12D/R/V/W, G13D, Q61H, R68S, H95D/Q/R, Y96C, and high-level amplification of the KRAS(G12C) allele. Acquired bypass mechanisms of resistance included MET amplification; activating mutations in NRAS, BRAF, MAP2K1, and RET; oncogenic fusions involving ALK, RET, BRAF, RAF1, and FGFR3; and loss-of-function mutations in NF1 and PTEN. In two of nine patients with lung adenocarcinoma for whom paired tissue-biopsy samples were available, histologic transformation to squamous-cell carcinoma was observed without identification of any other resistance mechanisms. Using an in vitro deep mutational scanning screen, we systematically defined the landscape of KRAS mutations that confer resistance to KRAS(G12C) inhibitors.
CONCLUSIONS: Diverse genomic and histologic mechanisms impart resistance to covalent KRAS(G12C) inhibitors, and new therapeutic strategies are required to delay and overcome this drug resistance in patients with cancer. (Funded by Mirati Therapeutics and others; ClinicalTrials.gov number, NCT03785249.)
Disc1 variation leads to specific alterations in adult neurogenesis
Disrupted in schizophrenia 1 (DISC1) is a risk factor for a spectrum of neuropsychiatric illnesses including schizophrenia, bipolar disorder, and major depressive disorder. Here we use two missense Disc1 mouse mutants, described previously with distinct behavioural phenotypes, to demonstrate that Disc1 variation exerts differing effects on the formation of newly generated neurons in the adult hippocampus. Disc1 mice carrying a homozygous Q31L mutation, and displaying depressive-like phenotypes, have fewer proliferating cells while Disc1 mice with a homozygous L100P mutation that induces schizophrenia-like phenotypes, show changes in the generation, placement and maturation of newly generated neurons in the hippocampal dentate gyrus. Our results demonstrate Disc1 allele specific effects in the adult hippocampus, and suggest that the divergence in behavioural phenotypes may in part stem from changes in specific cell populations in the brain
- …