20 research outputs found

    Structure and stability of charged clusters

    Full text link
    When a cluster or nanodroplet bears charge, its structure and thermodynamics are altered and, if the charge exceeds a certain limit, the system becomes unstable with respect to fragmentation. Some of the key results in this area were derived by Rayleigh in the nineteenth century using a continuum model of liquid droplets. Here we revisit the topic using a simple particle-based description, presenting a systematic case study of how charge affects the physical properties of a Lennard-Jones cluster composed of 309 particles. We find that the ability of the cluster to sustain charge depends on the number of particles over which the charge is distributed---a parameter not included in Rayleigh's analysis. Furthermore, the cluster may fragment before the charge is strong enough to drive all charged particles to the surface. The charged particles in stable clusters are therefore likely to reside in the cluster's interior even without considering solvation effects.Comment: 15 pages, 6 figure

    Palladium catalysed C-H arylation of pyrenes: access to a new class of exfoliating agents for water-based graphene dispersions.

    Get PDF
    From Europe PMC via Jisc Publications RouterHistory: ppub 2020-01-01, epub 2020-01-28Publication status: PublishedFunder: Engineering and Physical Sciences Research Council; Grant(s): 1781838, EP/P00119X/1A new and diverse family of pyrene derivatives was synthesised via palladium-catalysed C-H ortho-arylation of pyrene-1-carboxylic acid. The strategy affords easy access to a broad scope of 2-substituted and 1,2-disubstituted pyrenes. The C1-substituent can be easily transformed into carboxylic acid, iodide, alkynyl, aryl or alkyl functionalities. This approach gives access to arylated pyrene ammonium salts, which outperformed their non-arylated parent compound during aqueous Liquid Phase Exfoliation (LPE) of graphite and compare favourably to state-of-the-art sodium pyrene-1-sulfonate PS1. This allowed the production of concentrated and stable suspensions of graphene flakes in water

    Raman Fingerprints of Graphene Produced by Anodic Electrochemical Exfoliation

    Get PDF
    Electrochemical exfoliation is one of the most promising methods for scalable production of graphene. However, limited understanding of its Raman spectrum as well as lack of measurement standards for graphene strongly limit its industrial applications. In this work we show a systematic study of the Raman spectrum of electrochemically exfoliated graphene, produced using different electrolytes and different types of solvents in varying amounts. We demonstrate that no information on the thickness can be extracted from the shape of the 2D peak as this type of graphene is defective. Furthermore, the number of defects and the uniformity of the samples strongly depend on the experimental conditions, including post-processing. Under specific conditions, formation of short conductive trans-polyacetylene chains has been observed. Our Raman analysis provides guidance for the community on how to get information on defects coming from electrolyte, temperature and other experimental conditions, by making Raman spectroscopy a powerful metrology tool.Comment: This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in Nano Letters, American Chemical Society after peer review. To access the final edited and published work, included the SI, see DOI: 10.1021/acs.nanolett.0c0033

    Self-Catalytic Membrane Photo-Reactor made of Carbon Nitride Nanosheets

    No full text
    In this study we use a membrane photo-reactor (MPR) made of nanosheets of graphitic carbon nitride (g-C3N4), assembled by vacuum filtration, to make low-cost, efficient, easy-to-produce self-catalytic photo-reactors for water treatment under visible light.</p

    Palladium Catalysed C–H Arylation of Pyrenes: Access to a New Class of Exfoliating Agents for Water-Based Graphene Dispersions

    No full text
    A new and diverse family of pyrene derivatives was synthesised via palladium-catalysed C–H ortho-arylation of pyrene-1-carboxylic acid. The strategy affords easy access to a broad scope of 2-substituted and 1,2-disubstituted pyrenes. The C1-substituent can be easily transformed into carboxylic acid, iodide, alkynyl, aryl or alkyl functionalities. This approach gives access to arylated pyrene ammonium salts, which outperformed their non-arylated parent compound during aqueous Liquid Phase Exfoliation (LPE) of graphite and compare favourably to state-of-the-art sodium pyrene-1-sulfonate PS1. This allowed the production of concentrated and stable suspensions of graphene flakes in water

    Enhancing the Liquid-Phase Exfoliation of Graphene in Organic Solvents upon Addition of n-Octylbenzene

    Get PDF
    Due to a unique combination of electrical and thermal conductivity, mechanical stiffness, strength and elasticity, graphene became a rising star on the horizon of materials science. This two-dimensional material has found applications in many areas of science ranging from electronics to composites. Making use of different approaches, unfunctionalized and non-oxidized graphene sheets can be produced; among them an inexpensive and scalable method based on liquid-phase exfoliation of graphite (LPE) holds potential for applications in opto-electronics and nanocomposites. Here we have used n-octylbenzene molecules as graphene dispersion-stabilizing agents during the graphite LPE process. We have demonstrated that by tuning the ratio between organic solvents such as N-methyl-2-pyrrolidinone or ortho-dichlorobenzene, and n-octylbenzene molecules, the concentration of exfoliated graphene can be enhanced by 230% as a result of the high affinity of the latter molecules for the basal plane of graphene. The LPE processed graphene dispersions were further deposited onto solid substrates by exploiting a new deposition technique called spincontrolled drop casting, which was shown to produce uniform highly conductive and transparent graphene films
    corecore