2,884 research outputs found

    Concept and Feasibility of One-Embedded System Payload Including Baseband Communication

    Get PDF
    Traditional approach of payload design develops modules separately such as control, compression and communication. Due to increasing demand of shorter development cycles and lower cost, we shall develop a highly adaptive approach for payload implementation so that we can update it in a short time according to the need of a new mission. Besides, the optimization of payload performance and communication link together becomes possible. Based on these, we propose a “one-embedded system” payload approach. All the control, file management, processing such as compression, and communications are implemented in one built-in embedded system. In other words, after the sensor signal is converted as digital data (after ADC, analog-to-digital-converter), the data gets into the proposed embedded system. And the system “does everything” and then outputs data to DAC (digital-to-analog-converter) and then transmitted it in analog form. The proposed embedded system includes a FPGA implementing a processor IP. Due to the programmable characteristic of FPGA, hardware interfaces can be adjusted quickly according to various mission requirements. Besides, because of the flexibility and adaptability of software, code can be updated to optimize performance according to various tasks during flight. In this work, we provide concept, guideline of optimization, structure, feasibility, benefits and risks of one-embedded system payload approach. An example of implementation for optical remotes sensing payload including interfaces will be investigated

    What do they eat? A survey of eat-out habit of university students in Taiwan

    Full text link
    [EN] Main purpose of this research is trying to understand food likeliness of Taiwan college students, and probe whether these food are healthy. Three survey steps are taken as: step 1, market survey for what kind of foods are selling around the campuses; step 2, questionnaire investigation for students food preference; step 3, analyzing whether these favorite foods are healthy or not. The result shows: major consideration for students food selection are “taste” and “price”; 63% of students are taking food or snacks late at night at least once a week. Top three most favorite foods are: Taiwanese fries (yan su ji), carbon grilled chicken and fried fish steaks. Quantities of these foods are small, prices are low, and easy access from roadside food stands. Problems of them are high calories, easy to accumulate free radical in human body, plus insanitary food processing environment. They are harmful to student health. We suggest Taiwan government take it seriouslyShih, K.; Wang, M.; Shih, H.; Lee, S.; Lin, T. (2020). What do they eat? A survey of eat-out habit of university students in Taiwan. Editorial Universitat Politècnica de València. 421-430. https://doi.org/10.4995/INN2019.2019.10562OCS42143

    Tailoring excitonic states of van der Waals bilayers through stacking configuration, band alignment and valley-spin

    Full text link
    Excitons in monolayer semiconductors have large optical transition dipole for strong coupling with light field. Interlayer excitons in heterobilayers, with layer separation of electron and hole components, feature large electric dipole that enables strong coupling with electric field and exciton-exciton interaction, at the cost that the optical dipole is substantially quenched (by several orders of magnitude). In this letter, we demonstrate the ability to create a new class of excitons in transition metal dichalcogenide (TMD) hetero- and homo-bilayers that combines the advantages of monolayer- and interlayer-excitons, i.e. featuring both large optical dipole and large electric dipole. These excitons consist of an electron that is well confined in an individual layer, and a hole that is well extended in both layers, realized here through the carrier-species specific layer-hybridization controlled through the interplay of rotational, translational, band offset, and valley-spin degrees of freedom. We observe different species of such layer-hybridized valley excitons in different heterobilayer and homobilayer systems, which can be utilized for realizing strongly interacting excitonic/polaritonic gases, as well as optical quantum coherent controls of bidirectional interlayer carrier transfer either with upper conversion or down conversion in energy

    Navier-Stokes flow field analysis of compressible flow in a high pressure safety relief valve

    Get PDF
    The objective of this study is to investigate the complex three-dimensional flowfield of an oxygen safety pressure relieve valve during an incident, with a computational fluid dynamic (CFD) analysis. Specifically, the analysis will provide a flow pattern that would lead to the expansion of the eventual erosion pattern of the hardware, so as to combine it with other findings to piece together a most likely scenario for the investigation. The CFD model is a pressure based solver. An adaptive upwind difference scheme is employed for the spatial discretization, and a predictor, multiple corrector method is used for the velocity-pressure coupling. The computational result indicated vortices formation near the opening of the valve which matched the erosion pattern of the damaged hardware

    MSEC2008-72532 DETERMINATION OF CUTTING FORCES FOR MICRO MILLING

    Get PDF
    Abstract To enhance the implementation of micro milling, it is necessary to clearly understand the dynamic characteristics of micro milling so that proper machining parameters can be used to meet the requirements of application. By taking the effect of minimum chip thickness and rake angle into account, a new cutting force model of micro-milling which is function the instantaneous cutting area and machining coefficients was developed. According to the instantaneous rotation trajectory of cutting edge, the cutting area projected to xy-plane was determined by rectangular integral method, and used to solve the instantaneous cutting area. After the machining coefficients were solved, the cutting force of micro-milling for different radial depths of cut and different axial depths of cut can be predicted. The results of micro-milling experimental have shown that the force model can predict the cutting force accurately by which the optimal cutting parameters can be selected for micro-milling application

    EFFECT OF BACKPACK ON SELECTED GAIT PARAMETERS OF PRIMARY SCHOOL CHilDREN

    Get PDF
    The purpose of this study was to compare the effects of a backpack load of 15% body weight (BW) on selected gait parameters of primary school children. Ten participants were recruited from primary school (age: 10.3 ± 0.48 yrs; hI: 141.3 ± 0 .41 cm; mass: 38.1 ± 6.1 kg). A JVC 9800 (60 hz) video camera synchronized with an AMTI force plate (1200 Hz) were used to collect data. A repeated measure t-test (p < 0.05) was used for group comparisons. The backpack load did not affect either the proportionate time of the stance phase, swing phase, or the magnitude of selected vertical and anterioposterior ground reaction force parameters. However, the 15% backpack load did cause a significant increase in proportionate double leg support time

    Homogeneous point mutation detection by quantum dot-mediated two-color fluorescence coincidence analysis

    Get PDF
    This report describes a new genotyping method capable of detecting low-abundant point mutations in a homogeneous, separation-free format. The method is based on integration of oligonucleotide ligation with a semiconductor quantum dot (QD)-mediated two-color fluorescence coincidence detection scheme. Surface-functionalized QDs are used to capture fluorophore-labeled ligation products, forming QD-oligonucleotide nanoassemblies. The presence of such nanoassemblies and thereby the genotype of the sample is determined by detecting the simultaneous emissions of QDs and fluorophores that occurs whenever a single nanoassembly flows through the femtoliter measurement volume of a confocal fluorescence detection system. The ability of this method to detect single events enables analysis of target signals with a multiple-parameter (intensities and count rates of the digitized target signals) approach to enhance assay sensitivity and specificity. We demonstrate that this new method is capable of detecting zeptomoles of targets and achieve an allele discrimination selectivity factor >10(5)
    • …
    corecore