Excitons in monolayer semiconductors have large optical transition dipole for
strong coupling with light field. Interlayer excitons in heterobilayers, with
layer separation of electron and hole components, feature large electric dipole
that enables strong coupling with electric field and exciton-exciton
interaction, at the cost that the optical dipole is substantially quenched (by
several orders of magnitude). In this letter, we demonstrate the ability to
create a new class of excitons in transition metal dichalcogenide (TMD) hetero-
and homo-bilayers that combines the advantages of monolayer- and
interlayer-excitons, i.e. featuring both large optical dipole and large
electric dipole. These excitons consist of an electron that is well confined in
an individual layer, and a hole that is well extended in both layers, realized
here through the carrier-species specific layer-hybridization controlled
through the interplay of rotational, translational, band offset, and
valley-spin degrees of freedom. We observe different species of such
layer-hybridized valley excitons in different heterobilayer and homobilayer
systems, which can be utilized for realizing strongly interacting
excitonic/polaritonic gases, as well as optical quantum coherent controls of
bidirectional interlayer carrier transfer either with upper conversion or down
conversion in energy