228 research outputs found

    Finite element modeling for analysis of cracked cylindrical pipes

    Get PDF
    The characteristic properties of shell element with similar shapes are used to generate a so-called super element for the analysis of the crack problems for cylindrical pressure vessels. The formulation is processed by matrix condensation without the involvement of special treatment. This method can deal with various singularity problems and it also presents excellent results to crack problems for cylindrical shell. Especially, the knowledge of the kind of singular order is not necessary in super element generation; it is very economical in terms of computer memory and programming. This method also exhibits versatility to solve the problem of kinked crack at cylindrical shell

    Experimental Entanglement Concentration and Universal Bell-state Synthesizer

    Get PDF
    We report a novel Bell-state synthesizer in which an interferometric entanglement concentration scheme is used. An initially mixed polarization state from type-II spontaneous parametric down-conversion becomes entangled after the interferometric entanglement concentrator. This Bell-state synthesizer is universal in the sense that the output polarization state is not affected by spectral filtering, crystal thickness, and, most importantly, the choice of pump source. It is also robust against environmental disturbance and a more general state, partially mixed−-partially entangled state, can be readily generated as well.Comment: Minor update (Newer data

    First-order interference of nonclassical light emitted spontaneously at different times

    Get PDF
    We study first-order interference in spontaneous parametric down-conversion generated by two pump pulses that do not overlap in time. The observed modulation in the angular distribution of the signal detector counting rate can only be explained in terms of a quantum mechanical description based on biphoton states. The condition for observing interference in the signal channel is shown to depend on the parameters of the idler radiation.Comment: 5 pages, two-column, submitted to PR

    Quantum interference with beamlike type-II spontaneous parametric down-conversion

    Full text link
    We implement experimentally a method to generate photon-number−-path and polarization entangled photon pairs using ``beamlike'' type-II spontaneous parametric down-conversion (SPDC), in which the signal-idler photon pairs are emitted as two separate circular beams with small emission angles rather than as two diverging cones.Comment: 4 pages, two-colum

    Quantum diffraction and interference of spatially correlated photon pairs generated by spontaneous parametric down-conversion

    Full text link
    We demonstrate one- and two-photon diffraction and interference experiments utilizing parametric down-converted photon pairs (biphotons) and a transmission grating. With two-photon detection, the biphoton exhibits a diffraction-interference pattern equivalent to that of an effective single particle that is associated with half the wavelength of the constituent photons. With one-photon detection, however no diffraction-interference pattern is observed. We show that these phenomena originate from the spatial quantum correlation between the down-converted photons.Comment: 4 pages, 5 figure

    Spectroscopy by frequency entangled photon pairs

    Full text link
    Quantum spectroscopy was performed using the frequency-entangled broadband photon pairs generated by spontaneous parametric down-conversion. An absorptive sample was placed in front of the idler photon detector, and the frequency of signal photons was resolved by a diffraction grating. The absorption spectrum of the sample was measured by counting the coincidences, and the result is in agreement with the one measured by a conventional spectrophotometer with a classical light source.Comment: 11 pages, 5 figures, to be published in Phys. Lett.

    Demonstration of Feed-Forward Control for Linear Optics Quantum Computation

    Get PDF
    One of the main requirements in linear optics quantum computing is the ability to perform single-qubit operations that are controlled by classical information fed forward from the output of single photon detectors. These operations correspond to pre-determined combinations of phase corrections and bit-flips that are applied to the post-selected output modes of non-deterministic quantum logic devices. Corrections of this kind are required in order to obtain the correct logical output for certain detection events, and their use can increase the overall success probability of the devices. In this paper, we report on the experimental demonstration of the use of this type of feed-forward system to increase the probability of success of a simple non-deterministic quantum logic operation from approximately 1/4 to 1/2. This logic operation involves the use of one target qubit and one ancilla qubit which, in this experiment, are derived from a parametric down-conversion photon pair. Classical information describing the detection of the ancilla photon is fed-forward in real-time and used to alter the quantum state of the output photon. A fiber optic delay line is used to store the output photon until a polarization-dependent phase shift can be applied using a high speed Pockels cell

    Interferometric Bell-state preparation using femtosecond-pulse-pumped Spontaneous Parametric Down-Conversion

    Full text link
    We present theoretical and experimental study of preparing maximally entangled two-photon polarization states, or Bell states, using femtosecond pulse pumped spontaneous parametric down-conversion (SPDC). First, we show how the inherent distinguishability in femtosecond pulse pumped type-II SPDC can be removed by using an interferometric technique without spectral and amplitude post-selection. We then analyze the recently introduced Bell state preparation scheme using type-I SPDC. Theoretically, both methods offer the same results, however, type-I SPDC provides experimentally superior methods of preparing Bell states in femtosecond pulse pumped SPDC. Such a pulsed source of highly entangled photon pairs is useful in quantum communications, quantum cryptography, quantum teleportation, etc.Comment: 11 pages, two-column format, to appear in PR

    Multi-parameter Entanglement in Quantum Interferometry

    Get PDF
    The role of multi-parameter entanglement in quantum interference from collinear type-II spontaneous parametric down-conversion is explored using a variety of aperture shapes and sizes, in regimes of both ultrafast and continuous-wave pumping. We have developed and experimentally verified a theory of down-conversion which considers a quantum state that can be concurrently entangled in frequency, wavevector, and polarization. In particular, we demonstrate deviations from the familiar triangular interference dip, such as asymmetry and peaking. These findings improve our capacity to control the quantum state produced by spontaneous parametric down-conversion, and should prove useful to those pursuing the many proposed applications of down-converted light.Comment: submitted to Physical Review
    • 

    corecore