12,782 research outputs found
Understanding Rates of Marijuana Use and Consequences Among Adolescents in a Changing Legal Landscape.
Purpose of Review:There is not one answer to address whether marijuana use has increased, decreased, or stayed the same given changes in state legalization of medical and non-medical marijuana in the USA. Recent Findings:Evidence suggests some health benefits for medical marijuana; however, initiation of marijuana use is a risk factor for developing problem cannabis use. Though use rates have remained stable over recent years, about one in three 10th graders report marijuana use, most adolescents do not view the drug as harmful, and over 650,000 youth aged 12 to 17 struggle with cannabis use disorder. Summary:Although the health benefits of medical marijuana are becoming better understood, more research is needed. Intervention and prevention programs must better address effects of marijuana, acknowledging that while there may be some benefits medically, marijuana use can affect functioning during adolescence when the brain is still developing
Effect of lubricant environment on saw damage in silicon wafers
The chemomechanical effect of lubricant environments on the inner diameter (ID) sawing induced surface damage in Si wafers was tested for four different lubricants: water, dielectric oil, and two commercial cutting solutions. The effects of applying different potential on Si crystals during the sawing were also tested. It is indicated that the number and depth of surface damage are sensitive to the chemical nature of the saw lubricant. It is determined that the lubricants that are good catalysts for breaking Si bonds can dampen the out of plane blade vibration more effectively and produce less surface damage. Correlations between the applied potential and the depth of damage in the dielectric oil and one of the commercial cutting solutions and possible mechanisms involved are discussed
A two-dimensional numerical study of the flow inside the combustion chambers of a motored rotary engine
A numerical study was performed to investigate the unsteady, multidimensional flow inside the combustion chambers of an idealized, two-dimensional, rotary engine under motored conditions. The numerical study was based on the time-dependent, two-dimensional, density-weighted, ensemble-averaged conservation equations of mass, species, momentum, and total energy valid for two-component ideal gas mixtures. The ensemble-averaged conservation equations were closed by a K-epsilon model of turbulence. This K-epsilon model of turbulence was modified to account for some of the effects of compressibility, streamline curvature, low-Reynolds number, and preferential stress dissipation. Numerical solutions to the conservation equations were obtained by the highly efficient implicit-factored method of Beam and Warming. The grid system needed to obtain solutions were generated by an algebraic grid generation technique based on transfinite interpolation. Results of the numerical study are presented in graphical form illustrating the flow patterns during intake, compression, gaseous fuel injection, expansion, and exhaust
Simulation of valveless micropump and mode analysis
In this work, a 3-D simulation is performed to study for the solid-fluid
coupling effect driven by piezoelectric materials and utilizes asymmetric
obstacles to control the flow direction. The result of simulation is also
verified. For a micropump, it is crucial to find the optimal working frequency
which produce maximum net flow rate. The PZT plate vibrates under the first
mode, which is symmetric. Adjusting the working frequency, the maximum flow
rate can be obtained. For the micrpump we studied, the optimal working
frequency is 3.2K Hz. At higher working frequency, say 20K Hz, the fluid-solid
membrane may come out a intermediate mode, which is different from the first
mode and the second mode. It is observed that the center of the mode drifts.
Meanwhile, the result shows that a phase shift lagging when the excitation
force exists in the vibration response. Finally, at even higher working
frequency, say 30K Hz, a second vibration mode is observed.Comment: Submitted on behalf of EDA Publishing Association
(http://irevues.inist.fr/EDA-Publishing
Learning Temporal Transformations From Time-Lapse Videos
Based on life-long observations of physical, chemical, and biologic phenomena
in the natural world, humans can often easily picture in their minds what an
object will look like in the future. But, what about computers? In this paper,
we learn computational models of object transformations from time-lapse videos.
In particular, we explore the use of generative models to create depictions of
objects at future times. These models explore several different prediction
tasks: generating a future state given a single depiction of an object,
generating a future state given two depictions of an object at different times,
and generating future states recursively in a recurrent framework. We provide
both qualitative and quantitative evaluations of the generated results, and
also conduct a human evaluation to compare variations of our models.Comment: ECCV201
Complete Set of Homogeneous Isotropic Analytic Solutions in Scalar-Tensor Cosmology with Radiation and Curvature
We study a model of a scalar field minimally coupled to gravity, with a
specific potential energy for the scalar field, and include curvature and
radiation as two additional parameters. Our goal is to obtain analytically the
complete set of configurations of a homogeneous and isotropic universe as a
function of time. This leads to a geodesically complete description of the
universe, including the passage through the cosmological singularities, at the
classical level. We give all the solutions analytically without any
restrictions on the parameter space of the model or initial values of the
fields. We find that for generic solutions the universe goes through a singular
(zero-size) bounce by entering a period of antigravity at each big crunch and
exiting from it at the following big bang. This happens cyclically again and
again without violating the null energy condition. There is a special subset of
geodesically complete non-generic solutions which perform zero-size bounces
without ever entering the antigravity regime in all cycles. For these, initial
values of the fields are synchronized and quantized but the parameters of the
model are not restricted. There is also a subset of spatial curvature-induced
solutions that have finite-size bounces in the gravity regime and never enter
the antigravity phase. These exist only within a small continuous domain of
parameter space without fine tuning initial conditions. To obtain these
results, we identified 25 regions of a 6-parameter space in which the complete
set of analytic solutions are explicitly obtained.Comment: 38 pages, 29 figure
3D APIs in Interactive Real-Time Systems: Comparison of OpenGL, Direct3D and Java3D.
Since the first display of a few computer-generated lines on a Cathode-ray tube (CRT) over 40 years ago, graphics has progressed rapidly towards the computer generation of detailed images and interactive environments in real time (Angel, 1997). In the last twenty years a number of Application Programmer's Interfaces (APIs) have been developed to provide access to three-dimensional graphics systems. Currently, there are numerous APIs used for many different types of applications. This paper will look at three of these: OpenGL, Direct3D, and one of the newest entrants, Java3D. They will be discussed in relation to their level of versatility, programability, and how innovative they are in introducing new features and furthering the development of 3D-interactive programming
Kinetic Inductance of Josephson Junction Arrays: Dynamic and Equilibrium Calculations
We show analytically that the inverse kinetic inductance of an
overdamped junction array at low frequencies is proportional to the admittance
of an inhomogeneous equivalent impedance network. The bond in this
equivalent network has an inverse inductance
, where is the Josephson
coupling energy of the bond, is the ground-state phase
of the grain , and is the usual magnetic phase factor. We use this
theorem to calculate for square arrays as large as .
The calculated is in very good agreement with the low-temperature
limit of the helicity modulus calculated by conventional equilibrium
Monte Carlo techniques. However, the finite temperature structure of ,
as a function of magnetic field, is \underline{sharper} than the
zero-temperature , which shows surprisingly weak structure. In
triangular arrays, the equilibrium calculation of yields a series of
peaks at frustrations , where is an integer , consistent with experiment.Comment: 14 pages + 6 postscript figures, 3.0 REVTe
Quantum Imaging with Incoherent Photons
We propose a technique to obtain sub-wavelength resolution in quantum imaging
with potentially 100% contrast using incoherent light. Our method requires
neither path-entangled number states nor multi-photon absorption. The scheme
makes use of N photons spontaneously emitted by N atoms and registered by N
detectors. It is shown that for coincident detection at particular detector
positions a resolution of \lambda / N can be achieved.Comment: 4 pages, 3 figures, improved presentation. Accepted in Physical
Review Letter
- …