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We propose a technique to obtain subwavelength resolution in quantum imaging with potentially 100%
contrast using incoherent light. Our method requires neither path-entangled number states nor multi-
photon absorption. The scheme makes use of N photons spontaneously emitted by N atoms and registered
by N detectors. It is shown that for coincident detection at particular detector positions a resolution of �=N
can be achieved.
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In Young’s double slit experiment (or in a Mach-
Zehnder interferometer) the probability G�1��r� to de-
tect a photon at position r results from the interference
of the two possible paths a single photon can take to reach
the detector. This is expressed by the state j �1�i �
1=

���
2
p
�j1iUj0iL � j0iUj1iL�, where the subscript L (U) de-

notes the lower (upper) arm of the interferometer. Variation
of the detector position leads to a modulation of the form
G�1��r� / 1� cos��r�, where ��r� � kd sin��r� is the op-
tical phase difference of the waves emanating from the two
slits and k, d, and ��r� are the wave number, slit separation,
and scattering angle, respectively. Obviously, the fringe
spacing of the modulation [in units of d sin��r�] is deter-
mined by the optical wavelength �, in correspondence with
the Rayleigh criterion [1].

Quantum entanglement is able to bypass the Rayleigh
limit [2–11]. Consider, for example, the path-entangled
N-photon state j �N�i � 1=

���
2
p
�jNiUj0iL � j0iUjNiL�.

Because the N-photon state jNi has N times the energy
of the single-photon state j1i in a given mode it accumu-
lates phase N times as fast when propagating through the
setup. This gives rise to an N-photon absorption rate of the
form G�N��r; . . . ; r� / 1� cosN��r� exhibiting a fringe
spacing N times narrower than that of G�1��r� [4]. This
gain in resolution can be fruitfully applied to a wide range
of applications, e.g., to lithography [4,5], microscopy [8],
spectroscopy [9], and even magnetometry [10]. In order to
implement this N-fold increase in resolution commonly an
entangled state of the form j �N�i in combination with a
nonlinear medium sensitive to N-photon absorption is
needed [11].

In this Letter we propose a different scheme to achieve a
resolution of �=N involving neither of the above require-
ments. In what follows we will apply this scheme in the
context of microscopy. The method employs N photons
spontaneously emitted from N atoms subsequently de-

tected by N detectors where by means of post-selection it
is ensured that precisely one photon is recorded at each of
the N detectors. We demonstrate that in this case, for
certain detector positions r2; . . . ; rN , the Nth order corre-
lation function as a function of r1 takes the form 1�
cosN��r1�, resulting in a phase modulation with a theo-
retical contrast of 100% and a fringe spacing determined
by �=N. As with path-entangled number states, this corre-
sponds to an N-fold reduced fringe spacing compared to
G�1��r� while keeping a contrast of potentially 100%.
Hereby, only tools of linear optics are employed as a single
photon is registered at each detector.

To understand this outcome let us consider N identical
two-level atoms excited by a single laser � pulse. After the
spontaneous emission the N photons are registered by N
detectors at positions r1; . . . ; rN . For the sake of simplicity
let us consider coincident detection [12]. In that case the
Nth order correlation function [13] can be written (up to an
insignificant prefactor) as [14]

 G�N��r1; . . . ; rN� � hDy�r1� . . .Dy�rN�D�rN� . . .D�r1�i;

(1)

where

 D�ri� �
1����
N
p

XN
��1

��� e
�ikn�ri��R� : (2)

Here n�ri� � ri=ri stands for the unit vector in the direc-
tion of detector i; the sum is over all atom positions R�,
k � !0=c, with !0 the transition frequency; and ��� �
jgi�hej is the lowering operator of atom � for the transition
jei ! jgi.

For all atoms initially prepared in the excited state jei,
we obtain from Eqs. (1) and (2)

 G�N��r1; . . . ; rN� �
1

NN j��r1; . . . ; rN�j2; (3)
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where [15]

 ��r1; . . . ; rN� �
XN

�1 ;...;�N�1
�1�...��N

YN
��1

e�ikn�r�� ��R� : (4)

Equations (3) and (4) show that G�N��r1; . . . ; rN� results
from the interference of N! terms, associated with all
possibilities to scatter N photons from N identical atoms,
which are subsequently registered by N detectors.

To simplify further calculations let us consider the case
of N equidistant atoms. By choosing the origin of the
coordinate system in the center of the atomic chain, we
have

 R � � j�du; (5)

with u the unit vector along the chain axis, d the inter-
atomic spacing, and j� � ��N � 1�=2; . . . ; �N � 1�=2 for
� � 1; . . . ; N (see Fig. 1). By defining

 ��ri� � kdn�ri� � u � kd sin�i; (6)

where �i is the angle between n�ri� and the direction
normal to the atomic chain (see Fig. 1), we find

 G�N��r1; . . . ; rN� �
1

NN

�X
cos�j � ��

�
2
: (7)

Here, j is the vector of the distances of the atoms from the
origin in units of d:

 j � �j1; . . . ; jN�; (8)

� is given by

 � � ���r1�; . . . ; ��rN��; (9)

and the sum in Eq. (7) is over the N! permutations of the j
components.

Because of the symmetry of the configuration, the func-
tion G�N��r1; . . . ; rN� contains N!=2 cosine terms, each
oscillating in general with a different spatial frequency.
Obviously, the complexity of the expression rises rapidly
with increasing atom number N. However, if the N detec-
tors are placed in such a manner that all terms in Eq. (7)
interfere to give a single cosine, one is left with a modu-
lation oscillating at a unique spatial frequency. This occurs
in the following case: for arbitrary evenN and choosing the
detector positions such that

 ��r2� � ���r1�;

��r3� � ��r5� � . . . � ��rN�1� �
2�
N
;

��r4� � ��r6� � . . . � ��rN� � �
2�
N
;

(10)

the Nth order correlation function G�N� as a function of
detector position r1 reduces to

 G�N��r1� � ANf1� cos�N��r1��g; (11)

where AN is a constant which depends on N. For arbitrary
odd N > 1, and choosing the detector positions such that

 ��r2� � ���r1�;

��r3� � ��r5� � . . . � ��rN� �
2�

N � 1
;

��r4� � ��r6� � . . . � ��rN�1� � �
2�

N � 1
;

(12)

the Nth order correlation function G�N� as a function of r1

reduces to

 G�N��r1� � ANf1� cos��N � 1���r1��g: (13)

According to Eqs. (11) and (13), a correlation signal
with a modulation of a single cosine can be obtained for
any N, displaying a contrast of 100% and a fringe spacing
determined by �=N [�=�N � 1�] for even [odd] N. Note
that due to the limited detector sizes and the dipole emis-
sion pattern of the spontaneously emitted photons only a
subset of all emitted photons will be recorded. However, in
contrast to using maximally path-entangled N-photon
states we are able to avoid in this scheme both the necessity
to generate a state of the form j �N�i and the need to detect
a multiphoton absorption signal [16]. We emphasize that as
the photons are produced by spontaneous decay the inter-
ference signal is generated by incoherent light. We stress
further that a fringe contrast implied by Eq. (11) or Eq. (13)
proves the underlying quantum nature of the process [17–
19]. The quantum character is generated by the measure-
ment process after the detection of the first photon. In fact,
just before the detection of the Nth photon, the atomic
system is in an N-particle W state with one excitation [20].
The nonclassical characteristics of our scheme are thus

FIG. 1 (color online). Atomic arrangement and detection
scheme: N identical two-level atoms at R1; . . . ;RN spontane-
ously emit N photons after excitation by a laser pulse. The
photons are recorded in the far field by N detectors positioned
at r1; . . . ; rN . The figure exemplifies the case N � 4 (for addi-
tional symbols see text).
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another example of detection induced entanglement of
initially uncorrelated distant particles [19,21–26].

To exemplify our method, let us consider the simplest
situation, i.e., the case of N � 2 atoms. With j �
�� 1

2 ;�
1
2� we obtain from Eq. (7)

 G�2��r1; r2� �
1

2
f1� cos���r1� � ��r2��g: (14)

Obviously, the modulation of the G�2��r1; r2� function de-
pends on the relative position of the two detectors (see
Fig. 2): for ��r2� � ��r1� the second order correlation
function is a constant, whereas for fixed ��r2� the two
photon coincidence as a function of ��r1� exhibits the
same phase modulation and fringe spacing as G�1��r� in
Young’s double slit experiment. However, the increased
parameter space available for the detector positions in case
of two detectors allows also to pick out the relative ori-
entation ��r2� � ���r1�. In this case we get

 G�2��r1� �
1

2
f1� cos�2��r1��g; (15)

exhibiting a phase modulation as a function of r1 with half
the fringe spacing of G�1��r� while keeping a contrast of
100% (see also [15]). Note that the assumed condition for
the direction of emission of the two photons, i.e., ��r2� �
���r1�, corresponds to a space-momentum correlation of

the photons identical to the one present in spontaneous
parametric down-conversion [5,6,27].

In the case of the fourth order correlation function
G�4��r1; r2; r3; r4� for four equidistant atoms, and by plac-
ing the detectors according to Eq. (10) (see Fig. 2), one
finds

 G�4��r1� �
1

8
f1� cos�4��r1��g: (16)

Obviously,G�4� as a function of r1 exhibits a modulation of
a single cosine with a contrast of 100%, in this case with a
fringe spacing determined by �=4.

As an example, let us apply our scheme in the context of
microscopy. From Abbe’s theory of the microscope we
know that an object can be resolved only if at least two
principal maxima of the diffraction pattern are included in
the image formation [1]. According to this criterion the use
of the first order correlation function G�1��r1� for imaging
N equidistant atoms allows at best to resolve an inter-
atomic spacing equal to � [1]. Indeed, if each atom is
initially prepared in the state j	i � 1��

2
p �jgi � jei�, we get

from Eqs. (1) and (2)

 G�1��r1� �
1

2

�
1�

1

N

XN�1

��1

�N � �� cos����r1��

�
: (17)

Equation (17) equals (up to an offset) the outcome of the
classical grating. As is well-known from the grating equa-
tion [and as Eq. (17) explicitly shows] two principal max-
ima appear in the far-field diffraction pattern only if the

FIG. 2 (color online). Left (a)–(c): density plots of G�2��r1; r2�
for two atoms versus ��r1� and ��r2�; left (d): density plot of
G�4��r1; r2; r3; r4� for four atoms versus ��r1� and ��r2�, with
��r3� � �=2 and ��r4� � ��=2. Right: cuts through the density
plots along the indicated lines, i.e., for (a) ��r2� � ��r1�,
(b) ��r2� � const, and (c),(d) ��r2� � ���r1�.

FIG. 3 (color online). G�1��r1� and G�4��r1� as a function of
��r1� for a chain of 4 atoms. The interval [� 2�, 2�] corre-
sponds to the maximal range of variation of ��r1� for an
interatomic distance d � � [see Eq. (6)]. The dashed lines
indicate the corresponding range in case of d � �=4.
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interatomic distance is greater or equal to � (see Fig. 3). By
contrast, the use of the Nth order correlation function with
the N detectors positioned according to Eq. (10) [or
Eq. (12)] allows to resolve an atom-atom separation as
small as �=N [or �=�N � 1�] (see Fig. 3). In this way the
Nth order correlation function G�N��r1� can be used to
resolve and image trapped atoms separated by a distance
d � �=N.

Finally, we address the technical feasibility of our
scheme. For the ability to localize atoms and adequately
resolve optical path differences on a scale smaller than �
we refer to [28–30]. A detector of a given size s positioned
at a distance L � jrij in the far-field region (see Fig. 1)
gives rise to an angular resolution �� � s=L, i.e., to a
phase resolution �� � kd cos���. To resolve the modu-
lation of the Nth order correlation function G�N��r1�, a
sufficient requirement is that N��	 2�, i.e., ��	
�=�Nd�, which yields the condition

 L
 s
Nd
�
: (18)

For givenN and d we can thus find for any detector size s a
distance L to achieve the necessary resolution. Hereby,
choosing the smallest L compatible with Eq. (18) is favor-
able in order to maximize the N-photon detection proba-
bility; the exact longitudinal positions of the detectors are
thereby not important. In case of a gaussian distribution of
the phases ��ri� (i � 2; . . . ; N) around their ideal values
given by Eqs. (10) or (12) with a standard deviation � the
contrast of the G�N��r1� function is reduced and given by
e�N�

2=4. For N � 2 and N � 4, this means that a contrast
of higher than 50% can be maintained as long as � is less
than 0.8 and 1.2, respectively. Using the set of reasonable
parameters d � 5 
m, �d � 0:1 
m, ��r1� � 30�,
���r1� � 0:1�, k � 2�=800 nm, and �k < 10�7k we ob-
tain � � 0:7.

In conclusion we have shown that N photons of wave-
length � spontaneously emitted by N atoms and coinci-
dentally recorded by N detectors at particular positions
exhibit correlations and interference properties similar to
classical coherent light of wavelength �=N. The method
requires neither initially entangled states nor multiphoton
absorption, only common single-photon detectors.
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