36 research outputs found
Suppression of Borna Disease Virus Replication during Its Persistent Infection Using the CRISPR/Cas13b System
Borna disease virus (BoDV-1) is a bornavirus that infects the central nervous systems of various animal species, including humans, and causes fatal encephalitis. BoDV-1 also establishes persistent infection in neuronal cells and causes neurobehavioral abnormalities. Once neuronal cells or normal neural networks are lost by BoDV-1 infection, it is difficult to regenerate damaged neural networks. Therefore, the development of efficient anti-BoDV-1 treatments is important to improve the outcomes of the infection. Recently, one of the clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) systems, CRISPR/Cas13, has been utilized as antiviral tools. However, it is still unrevealed whether the CRISPR/Cas13 system can suppress RNA viruses in persistently infected cells. In this study, we addressed this question using persistently BoDV-1-infected cells. The CRISPR/Cas13 system targeting viral mRNAs efficiently decreased the levels of target viral mRNAs and genomic RNA (gRNA) in persistently infected cells. Furthermore, the CRISPR/Cas13 system targeting viral mRNAs also suppressed BoDV-1 infection if the system was introduced prior to the infection. Collectively, we demonstrated that the CRISPR/Cas13 system can suppress BoDV-1 in both acute and persistent infections. Our findings will open the avenue to treat prolonged infection with RNA viruses using the CRISPR/Cas13 system
Propolis Components and Biological Activities from Stingless Bees Collected on South Sulawesi, Indonesia
Three new compounds, namely sulabiroins A (1) and B (2), and 2',3'-dihydro-3'-hydroxypapuanic acid (3), were isolated from the propolis of stingless bees (Tetragonula aff. biroi) collected on South Sulawesi, Indonesia. In addition, ten known compounds, (–)-papuanic acid (4), (–)-isocalolongic acid (5), isopapuanic acid (6), isocalopolyanic acid (7), glyasperin A (8), broussoflavonol F (9), (2S)-5,7-dihydroxy-4'-methoxy-8-prenylflavanone (10), isorhamnetin (11), (1'S)-2-trans,4-trans-abscisic acid (12), and (1'S)-2-cis,4-trans-abscisic acid (13) were identified. The structures of the new and known compounds were determined by spectroscopic analysis. The absolute configurations of sulabiroins A (1) and B (2) were determined by X-ray crystallography analysis and ECD calculation, respectively. The propolis from stingless bee (Tetragonula aff. biroi) collected on South Sulawesi contained compounds not present in propolis from other regions. Sulabiroin A (1) and isorhamnetin (11) were examined for xanthine oxidase (XO) inhibitory activity as one of biological activities; isorhamnetin (11) exhibited potent XO inhibitory activity, with an IC50 value of 3.9 µm
Electronic structures and magnetic moments of Co3FeN thin films grown by molecular beam epitaxy
We evaluated electronic structures and magnetic moments in Co3FeN epitaxial films on SrTiO3(001). The experimentally obtained hard x-ray photoemission spectra of the Co3FeN film have a good agreement with those calculated. Site averaged spin magnetic moments deduced by x-ray magnetic circular dichroism were 1.52 μ B per Co atom and 2.08 μ B per Fe atom at 100 K. They are close to those of Co4N and Fe4N, respectively, implying that the Co and Fe atoms randomly occupy the corner and face-centered sites in the Co3FeN unit cell
The integrin-linked kinase-PINCH-parvin complex supports integrin αIIbβ3 activation.
Integrin-linked kinase (ILK) is an important signaling regulator that assembles into the heteroternary complex with adaptor proteins PINCH and parvin (termed the IPP complex). We recently reported that ILK is important for integrin activation in a Chinese hamster ovary (CHO) cell system. We previously established parental CHO cells expressing a constitutively active chimeric integrin (αIIbα6Bβ3) and mutant CHO cells expressing inactive αIIbα6Bβ3 due to ILK deficiency. In this study, we further investigated the underlying mechanisms for ILK-dependent integrin activation. ILK-deficient mutant cells had trace levels of PINCH and α-parvin, and transfection of ILK cDNA into the mutant cells increased not only ILK but also PINCH and α-parvin, resulting in the restoration of αIIbα6Bβ3 activation. In the parental cells expressing active αIIbα6Bβ3, ILK, PINCH, and α-parvin were co-immunoprecipitated, indicating the formation of the IPP complex. Moreover, short interfering RNA (siRNA) experiments targeting PINCH-1 or both α- and β-parvin mRNA in the parent cells impaired the αIIbα6Bβ3 activation as well as the expression of the other components of the IPP complex. In addition, ILK mutants possessing defects in either PINCH or parvin binding failed to restore αIIbα6Bβ3 activation in the mutant cells. Kindlin-2 siRNA in the parental cells impaired αIIbα6Bβ3 activation without disturbing the expression of ILK. For CHO cells stably expressing wild-type αIIbβ3 that is an inactive form, overexpression of a talin head domain (THD) induced αIIbβ3 activation and the THD-induced αIIbβ3 activation was impaired by ILK siRNA through a significant reduction in the expression of the IPP complex. In contrast, overexpression of all IPP components in the αIIbβ3-expressing CHO cells further augmented THD-induced αIIbβ3 activation, whereas they did not induce αIIbβ3 activation without THD. These data suggest that the IPP complex rather than ILK plays an important role and supports integrin activation probably through stabilization of the active conformation
Trend Estimation of Blood Glucose Level Fluctuations Based on Data Mining
We have fabricated calorie-calculating software that calculates and records the total calorific food intake by choosing a meal menu selected using a computer mouse. The purpose of this software was to simplify data collection throughout a person's normal life, even if they were inexperienced computer operators. Three portable commercial devices have also been prepared a blood glucose monitor, a metabolic rate monitor and a mobile-computer, and linked into the calorie-calculating software. Time-course changes of the blood glucose level, metabolic rate and food intake were measured using these devices during a 3 month period. Based on the data collected in this study we could predict blood glucose levels of the next morning (FBG) by modeling using data mining. Although a large error rate was found for predicting the absolute value, conditions could be found that improved the accuracy of the predicting trends in blood glucose level fluctuations by up to 90 %. However, in order to further improve the accuracy of estimation it was necessary to obtain further details about the patients' life style or to optimise the input variables that were dependent on each patient rather than collecting data over longer periods
Carob pod polyphenols suppress the differentiation of adipocytes through posttranscriptional regulation of C/EBPβ.
Obesity is a major risk factor for various chronic diseases such as diabetes, cardiovascular disease, and cancer; hence, there is an urgent need for an effective strategy to prevent this disorder. Currently, the anti-obesity effects of food ingredients are drawing attention. Therefore, we focused on carob, which has high antioxidant capacity and various physiological effects, and examined its anti-obesity effect. Carob is cultivated in the Mediterranean region, and its roasted powder is used as a substitute for cocoa powder. We investigated the effect of carob pod polyphenols (CPPs) on suppressing increases in adipose tissue weight and adipocyte hypertrophy in high fat diet-induced obesity model mice, and the mechanism by which CPPs inhibit the differentiation of 3T3-L1 preadipocytes into adipocytes in vitro. In an in vivo experimental system, we revealed that CPPs significantly suppressed the increase in adipose tissue weight and adipocyte hypertrophy. Moreover, in an in vitro experimental system, CPPs acted at the early stage of differentiation of 3T3-L1 preadipocytes and suppressed cell proliferation because of differentiation induction. They also suppressed the expression of transcription factors involved in adipocyte differentiation, thereby reducing triacylglycerol synthesis ability and triglycerol (TG) accumulation. Notably, CPPs regulated CCAAT/enhancer binding protein (C/EBP)β, which is expressed at the early stage of differentiation, at the posttranscriptional level. These results demonstrate that CPPs suppress the differentiation of adipocytes through the posttranscriptional regulation of C/EBPβ and may serve as an effective anti-obesity compound
Characterization of ILK-deficient mutant cells expressing inactive αIIbα6Bβ3.
<p>(A) Immunoblotting for ILK, PINCH, α-parvin, talin, and kindlin-2. Cell lysates obtained from parental cells with constitutively active αIIbα6Bβ3, ILK-deficient mutant cells with inactive αIIbα6Bβ3, and mutant cells transiently transfected with rat ILK cDNA were electrophoresed on SDS-PAGE gels and immunoblotted with indicated Abs. GAPDH shows an internal loading control. (B) Flow cytometry analysis showing PAC-1 (an activation-specific mAb for αIIbβ3) binding to mutant cells transiently transfected with either ILK plasmid or empty plasmid. Bound PAC-1 was detected with a PE-conjugated secondary mAb. </p
Detection of IPP complex proteins in αIIbα6Bβ3-active parental cells.
<p>Cell lysates obtained from αIIbα6Bβ3-active parental cells were immunoprecipitated with Abs against PINCH (A), α-parvin (B, C), and ILK (D). The co-precipitates were detected by Abs for α-parvin (A), ILK (B), and PINCH (C, D). IgG means immunoprecipitation (IP) using non-immune control IgG. IB stands for immunoblotting. Arrows indicate the predicted sizes of the indicated proteins. Arrowheads (D) indicate the antibody heavy chains used in the IP. Different mobilities between those of the two IgG antibodies are probably caused by differences in the amino acid compositions of them. </p