101 research outputs found

    Corn Plant Location, Spacing and Stalk Diameter Measurement Using Optical Sensing Technologies

    Get PDF
    Plant within-row spacing and stalk diameters at mid-growth stages have been demonstrated to be important variables in the by-plant yield prediction model for corn. This information would help advising the in-season variable-rate fertilizer application to increase the fertilizer use efficiency. Little study could be found in developing an automatic, non-invasive and high spatial resolution system to measure these variables at the desired growth stages. A three-year study was conducted on this topic. The overall goal of this study was to investigate the feasibility of various machine vision technologies and to develop prototype systems for corn plant location, within-row spacing and stalk diameter measurements at their mid-growth stages.In Phase I and II of this study, a system for plant location and within-row spacing measurements based on the LiDAR technology was developed and improved. In Phase III, a system for plant stalk diameter measurement using two different approaches was developed - the LiDAR-and-RGB Approach was a combination of a LiDAR sensor and a webcam; the 3D Range Imaging Approach used a 3D range camera. In each system, sensors were mounted on a cart and viewing horizontally at the lower sections of plant stalks. These systems featured with their abilities of viewing each plant from multiple angles when the sensors were passed by, which largely increased the possibility of correct identification. At each phase, the system was tested in the field condition. Data processing algorithms were developed to identify potential stalks in a laser scan, a RGB image or a distance image; and to register information between scans or different sensors.A total error of 5.5% in plant counting and a 1.9 cm of root-mean-squared error (RMSE) in the spacing measurement were achieved between the sensor measurements and the manually measured ground truth for data collected in year 2012. The RMSE of diameter measurement were 4.1 mm and 3.9 mm for the LiDAR-and-RGB Approach and 3D Range Imaging Approach, respectively. This study was a good basis of developing a high spatial resolution corn plant within-row spacing and stalk diameter sensing system for real-time, variable-rate fertilizer application.Biosystems & Agricultural Engineerin

    Detection of multi-tomato leaf diseases (late blight, target and bacterial spots) in different stages by using a spectral-based sensor.

    Get PDF
    Several diseases have threatened tomato production in Florida, resulting in large losses, especially in fresh markets. In this study, a high-resolution portable spectral sensor was used to investigate the feasibility of detecting multi-diseased tomato leaves in different stages, including early or asymptomatic stages. One healthy leaf and three diseased tomato leaves (late blight, target and bacterial spots) were defined into four stages (healthy, asymptomatic, early stage and late stage) and collected from a field. Fifty-seven spectral vegetation indices (SVIs) were calculated in accordance with methods published in previous studies and established in this study. Principal component analysis was conducted to evaluate SVIs. Results revealed six principal components (PCs) whose eigenvalues were greater than 1. SVIs with weight coefficients ranking from 1 to 30 in each selected PC were applied to a K-nearest neighbour for classification. Amongst the examined leaves, the healthy ones had the highest accuracy (100%) and the lowest error rate (0) because of their uniform tissues. Late stage leaves could be distinguished more easily than the two other disease categories caused by similar symptoms on the multi-diseased leaves. Further work may incorporate the proposed technique into an image system that can be operated to monitor multi-diseased tomato plants in fields

    REVIEW OF ROBOTIC TECHNOLOGY FOR STRAWBERRY PRODUCTION

    Get PDF
    With an increasing world population in need of food and a limited amount of land for cultivation, higher efficiency in agricultural production, especially fruits and vegetables, is increasingly required. The success of agricultural production in the marketplace depends on its quality and cost. The cost of labor for crop production, harvesting, and post-harvesting operations is a major portion of the overall production cost, especially for specialty crops such as strawberry. As a result, a multitude of automation technologies involving semi-autonomous and autonomous robots have been utilized, with an aim of minimizing labor costs and operation time to achieve a considerable improvement in farming efficiency and economic performance. Research and technologies for weed control, harvesting, hauling, sorting, grading, and/or packing have been generally reviewed for fruits and vegetables, yet no review has been conducted thus far specifically for robotic technology being used in strawberry production. In this article, studies on strawberry robotics and their associated automation technologies are reviewed in terms of mechanical subsystems (e.g., traveling unit, handling unit, storage unit) and electronic subsystems (e.g., sensors, computer, communication, and control). Additionally, robotic technologies being used in different stages in strawberry production operations are reviewed. The robot designs for strawberry management are also categorized in terms of purpose and environment

    Ag-IoT for crop and environment monitoring: Past, present, and future

    Get PDF
    CONTEXT: Automated monitoring of the soil-plant-atmospheric continuum at a high spatiotemporal resolution is a key to transform the labor-intensive, experience-based decision making to an automatic, data-driven approach in agricultural production. Growers could make better management decisions by leveraging the real-time field data while researchers could utilize these data to answer key scientific questions. Traditionally, data collection in agricultural fields, which largely relies on human labor, can only generate limited numbers of data points with low resolution and accuracy. During the last two decades, crop monitoring has drastically evolved with the advancement of modern sensing technologies. Most importantly, the introduction of IoT (Internet of Things) into crop, soil, and microclimate sensing has transformed crop monitoring into a quantitative and data-driven work from a qualitative and experience-based task. OBJECTIVE: Ag-IoT systems enable a data pipeline for modern agriculture that includes data collection, transmission, storage, visualization, analysis, and decision-making. This review serves as a technical guide for Ag-IoT system design and development for crop, soil, and microclimate monitoring. METHODS: It highlighted Ag-IoT platforms presented in 115 academic publications between 2011 and 2021 worldwide. These publications were analyzed based on the types of sensors and actuators used, main control boards, types of farming, crops observed, communication technologies and protocols, power supplies, and energy storage used in Ag-IoT platforms

    Elucidating Sorghum Biomass, Nitrogen and Chlorophyll Contents With Spectral and Morphological Traits Derived From Unmanned Aircraft System

    Get PDF
    Unmanned aircraft systems (UAS) provide an efficient way to phenotype cropmorphology with spectral traits such as plant height, canopy cover and various vegetation indices (VIs) providing information to elucidate genotypic responses to the environment. In this study, we investigated the potential use of UAS-derived traits to elucidate biomass, nitrogen and chlorophyll content in sorghum under nitrogen stress treatments. A nitrogen stress trial located in Nebraska, USA, contained 24 different sorghum lines, 2 nitrogen treatments and 8 replications, for a total of 384 plots. Morphological and spectral traits including plant height, canopy cover and various VIs were derived from UAS flights with a true-color RGB camera and a 5-band multispectral camera at early, mid and late growth stages across the sorghum growing season in 2017. Simple and multiple regression models were investigated for sorghum biomass, nitrogen and chlorophyll content estimations using the derived morphological and spectral traits along with manual ground truthed measurements. Results showed that, the UAS-derived plant height was strongly correlated with manually measured plant height (r = 0.85); and the UAS-derived biomass using plant height, canopy cover and VIs had strong exponential correlations with the sampled biomass of fresh stalks and leaves (maximum r = 0.85) and the biomass of dry stalks and leaves (maximum r = 0.88). The UAS-derived VIs were moderately correlated with the laboratory measured leaf nitrogen content (r = 0.52) and the measured leaf chlorophyll content (r = 0.69) in each plot. The methods developed in this study will facilitate genetic improvement and agronomic studies that require assessment of stress responses in large-scale field trials

    Damage Mapping of Powdery Mildew in Winter Wheat with High-Resolution Satellite Image

    Get PDF
    Powdery mildew, caused by the fungus Blumeria graminis, is a major winter wheat disease in China. Accurate delineation of powdery mildew infestations is necessary for site-specific disease management. In this study, high-resolution multispectral imagery of a 25 km2 typical outbreak site in Shaanxi, China, taken by a newly-launched satellite, SPOT-6, was analyzed for mapping powdery mildew disease. Two regions with high representation were selected for conducting a field survey of powdery mildew. Three supervised classification methods—artificial neural network, mahalanobis distance, and maximum likelihood classifier—were implemented and compared for their performance on disease detection. The accuracy assessment showed that the ANN has the highest overall accuracy of 89%, following by MD and MLC with overall accuracies of 84% and 79%, respectively. These results indicated that the high-resolution multispectral imagery with proper classification techniques incorporated with the field investigation can be a useful tool for mapping powdery mildew in winter wheat

    Wheat Height Estimation Using LiDAR in Comparison to Ultrasonic Sensor and UAS

    Get PDF
    As one of the key crop traits, plant height is traditionally evaluated manually, which can be slow, laborious and prone to error. Rapid development of remote and proximal sensing technologies in recent years allows plant height to be estimated in more objective and efficient fashions, while research regarding direct comparisons between different height measurement methods seems to be lagging. In this study, a ground-based multi-sensor phenotyping system equipped with ultrasonic sensors and light detection and ranging (LiDAR) was developed. Canopy heights of 100 wheat plots were estimated five times during a season by the ground phenotyping system and an unmanned aircraft system (UAS), and the results were compared to manual measurements. Overall, LiDAR provided the best results, with a root-mean-square error (RMSE) of 0.05 m and an R2 of 0.97. UAS obtained reasonable results with an RMSE of 0.09 m and an R2 of 0.91. Ultrasonic sensors did not perform well due to our static measurement style. In conclusion, we suggest LiDAR and UAS are reliable alternative methods for wheat height evaluation

    Detection of multi-tomato leaf diseases (\u3ci\u3elate blight, target and bacterial spots\u3c/i\u3e) in different stages by using a spectral-based sensor

    Get PDF
    Several diseases have threatened tomato production in Florida, resulting in large losses, especially in fresh markets. In this study, a high-resolution portable spectral sensor was used to investigate the feasibility of detecting multi-diseased tomato leaves in different stages, including early or asymptomatic stages. One healthy leaf and three diseased tomato leaves (late blight, target and bacterial spots) were defined into four stages (healthy, asymptomatic, early stage and late stage) and collected from a field. Fifty-seven spectral vegetation indices (SVIs) were calculated in accordance with methods published in previous studies and established in this study. Principal component analysis was conducted to evaluate SVIs. Results revealed six principal components (PCs) whose eigenvalues were greater than 1. SVIs with weight coefficients ranking from 1 to 30 in each selected PC were applied to a K-nearest neighbor for classification. Amongst the examined leaves, the healthy ones had the highest accuracy (100%) and the lowest error rate (0) because of their uniform tissues. Late stage leaves could be distinguished more easily than the two other disease categories caused by similar symptoms on the multi-diseased leaves. Further work may incorporate the proposed technique into an image system that can be operated to monitor multi-diseased tomato plants in fields

    Wheat Height Estimation Using LiDAR in Comparison to Ultrasonic Sensor and UAS

    Get PDF
    As one of the key crop traits, plant height is traditionally evaluated manually, which can be slow, laborious and prone to error. Rapid development of remote and proximal sensing technologies in recent years allows plant height to be estimated in more objective and efficient fashions, while research regarding direct comparisons between different height measurement methods seems to be lagging. In this study, a ground-based multi-sensor phenotyping system equipped with ultrasonic sensors and light detection and ranging (LiDAR) was developed. Canopy heights of 100 wheat plots were estimated five times during a season by the ground phenotyping system and an unmanned aircraft system (UAS), and the results were compared to manual measurements. Overall, LiDAR provided the best results, with a root-mean-square error (RMSE) of 0.05 m and an R2 of 0.97. UAS obtained reasonable results with an RMSE of 0.09 m and an R2 of 0.91. Ultrasonic sensors did not perform well due to our static measurement style. In conclusion, we suggest LiDAR and UAS are reliable alternative methods for wheat height evaluation

    DETECTING GRAIN FLOW RATE USING A LASER SCANNER

    Get PDF
    Detecting and measuring agricultural material flow is important in a wide range of applications in agricultural engineering, such as material handling, food processing, yield monitoring, and fertilizer spreading. In these applications, flow rate is determined by measuring material mass or volume as a function of time. Although different materials require detection, the methods for a given material type (e.g., granular) can be similar. Researchers have developed methods such as impact based sensors, radiometric-based sensors, and optical methods to detect and measure material flow. Abdul Rahim and Green (1998) studied an optical-fiber sensor (containing 32 light sources and 32 light detectors) in a tomographic measurement system to measure the flow of dry solids (sand or 3 mm plastic chips) in a gravity-drop system with an 81 mm diameter pipe and pneumatic conveyor. Their results showed linearity between flow rate and output voltage up to 0.5 kg s-1 mass flow rate. They concluded that increasing the number of optical-fiber sensors resulted in better accuracy, and the sensors had a linear response to the increased concentration of solids
    • …
    corecore