178 research outputs found

    Nuclear Power: Black Sky Liability or Black Sky Asset?

    Get PDF
    Ready access to abundant electricity is a key enabler of modern life. During the past decade the vulnerability of Critical Infrastructure sectors in the U.S. to a variety of natural hazards and man-made threats has become increasingly apparent. The electrical infrastructure (the “Grid”) is the foundation for all other critical civil infrastructures upon which our society depends. Therefore, protection of the Grid is an energy security, homeland security, and national security issue of highest importance. Geomagnetic disturbances (GMD) induced by solar coronal mass ejections (CMEs), electromagnetic pulse (EMP) attacks, and cyber attacks are three events having the potential to plunge the U.S. into partial or total Grid failure (de-energization) with subsequent blackouts so massive they are referred to as “Black Sky Events”. Embedded in the U.S. Grid are almost one hundred commercial nuclear power reactors in some sixty nuclear power plants (NPPs). This paper explores the nature of society’s coupled “system of systems” (i.e. Grid, other Critical Infrastructure, human operators of these infrastructures, Government, and the Public) that would be stressed by a Black Sky Event, and presents an analytical framework for probing the behavior of this system during Black Sky Events. The question of how NPPs might be impacted by a prolonged Black Sky Event, and what role, if any, NPPs can play in enabling a rapid recovery from a Black Sky Event is examined. The likely behavior of an NPP during a Black Sky Event is discussed, and it is concluded that today’s generation of NPPs are Black Sky liabilities. However, a unique characteristic of NPPs (the large fuel inventory maintained in the reactor) could make the NPPs extraordinarily valuable assets should a Black Sky Event occur. Their value in this regard depends on whether or not it might be possible to affect a number of changes in the NPPs, the U.S. Grid, and other Critical Infrastructure in the U.S. to enable the NPPs to become Black Start Units – generating stations that would be the foundation of recovering the U.S. Grid during a Black Sky Event. This paper poses the question, “Can today’s nuclear power plants be transformed from Black Sky Liabilities to Black Sky Assets, and if so, how?” An integrated framework for addressing this question is proposed

    NUCLEAR POWER AND ELECTRIC GRID RESILIENCE: CURRENT REALITIES AND FUTURE PROSPECTS

    Get PDF
    Life as we know it in modern society relies on the smooth functioning of the electric Grid – the Critical Infrastructure system that generates and delivers electricity to our homes, businesses, and factories. Virtually all other Critical Infrastructure systems depend on the Grid for the electricity they require to execute other essential societal functions such as telecommunications, water supply and waste water services, fuel delivery, etc. This study examines the concepts of Critical Infrastructure and electric Grid resilience, and the role nuclear power plants do and might play in enhancing U.S. Grid resilience. Grid resilience is defined as the system’s ability to minimize interruptions of electricity flow to customers given a specific load prioritization hierarchy. The question of whether current U.S. nuclear power plants are significant Grid resilience assets is examined in light of this definition. Despite their many virtues and their “fuel security,” the conclusion is reached that current U.S. nuclear power plants are not significant Grid resilience assets for scenarios involving major Grid disruptions. The concept of a “resilient nuclear power plant” or “rNPP” – a nuclear power plant that is intentionally designed, sited, interfaced, and operated in a manner to enhance Grid resilience – is presented. Two rNPP Key Attributes and Six rNPP Functional Requirements are defined. Several rNPP design features (system architectures and technologies) that could enable a plant to achieve the Six rNPP Functional Requirements are described. Four specific applications of rNPPs are proposed: (1) rNPPs as flexible electricity generation assets, (2) rNPPs as anchors of hybrid nuclear energy systems, (3) rNPPs as Grid Black Start Resources, and (4) rNPPs as anchors of Resilient Critical Infrastructure Islands. The last two applications are new concepts for enhancing U.S. strategic resilience. Finally, a few key unresolved issues are discussed and recommendations for future research are offered. Study results support the overall conclusion that successful development and deployment of rNPPs could significantly enhance U.S. Grid, Critical Infrastructure, and societal resilience, while transforming the value proposition of nuclear energy in the 21st century

    Pathways and Supply of Dissolved Iron in the Amundsen Sea (Antarctica)

    Get PDF
    Numerous coastal polynyas fringe the Antarctic continent and strongly influence the productivity of Antarctic shelf systems. Of the 46 Antarctic coastal polynyas documented in a recent study, the Amundsen Sea Polynya (ASP) stands out as having the highest net primary production per unit area. Incubation experiments suggest that this productivity is partly controlled by the availability of dissolved iron (dFe).As a first step toward understanding the iron supply of the ASP, we introduce four plausible sources of dFe and simulate their steady spatial distribution using conservative numerical tracers. The modeled distributions replicate important features from observations including dFe maxima at the bottom of deep troughsand enhanced concentrations near the ice shelf fronts. A perturbation experiment with an idealized draw-down mimicking summertime biological uptake and subsequent resupply suggests that glacial meltwaterand sediment-derived dFe are the main contributors to the prebloom dFe inventory in the top 100 m of the ASP. The sediment-derived dFe depends strongly on the buoyancy-driven overturning circulation associated with the melting ice shelves (the ‘‘meltwater pump’’) to add dFe to the upper 300 m of the water column. The results support the view that ice shelf melting plays an important direct and indirect role in the dFe supply and delivery to polynyas such as the ASP

    In situ phytoplankton distributions in the Amundsen Sea Polynya measured by autonomous gliders

    Get PDF
    The Amundsen Sea Polynya is characterized by large phytoplankton blooms, which makes this region disproportionately important relative to its size for the biogeochemistry of the Southern Ocean. In situ data on phytoplankton are limited, which is problematic given recent reports of sustained change in the Amundsen Sea. During two field expeditions to the Amundsen Sea during austral summer 2010-2011 and 2014, we collected physical and bio-optical data from ships and autonomous underwater gliders. Gliders documented large phytoplankton blooms associated with Antarctic Surface Waters with low salinity surface water and shallow upper mixed layers (\u3c 50 m). High biomass was not always associated with a specific water mass, suggesting the importance of upper mixed depth and light in influencing phytoplankton biomass. Spectral optical backscatter and ship pigment data suggested that the composition of phytoplankton was spatially heterogeneous, with the large blooms dominated by Phaeocystis and non-bloom waters dominated by diatoms. Phytoplankton growth rates estimated from field data (\u3c = 0.10 day(-1)) were at the lower end of the range measured during ship-based incubations, reflecting both in situ nutrient and light limitations. In the bloom waters, phytoplankton biomass was high throughout the 50-m thick upper mixed layer. Those biomass levels, along with the presence of colored dissolved organic matter and detritus, resulted in a euphotic zone that was often \u3c 10 m deep. The net result was that the majority of phytoplankton were light-limited, suggesting that mixing rates within the upper mixed layer were critical to determining the overall productivity; however, regional productivity will ultimately be controlled by water column stability and the depth of the upper mixed layer, which may be enhanced with continued ice melt in the Amundsen Sea Polynya

    Forced Rayleigh Scattering Studies of Tracer Diffusion in a Nematic Liquid Crystal: The Relevance of Complementary Gratings

    Full text link
    We have employed forced Rayleigh scattering (FRS) to study the diffusion of an azo tracer molecule (methyl red) through a nematic liquid crystal (5CB). This system was first investigated in an important study by Hara et al. (Japan. J. Appl. Phys. 23, 1420 [1984]). Since that time, it has become clear that the presence of complementary ground-state and photoproduct FRS gratings can result in nonexponential profiles, and that complementary-grating effects are significant even when "minor" deviations from exponential decay are observed. We have investigated the methyl red/5CB system in order to evaluate the possible effects of complementary gratings. In the isotropic phase, we find that the presence of complementary gratings results in a nonmonotonic FRS signal, which significantly changes the values inferred for the isotropic diffusion coefficients. As a result, the previously reported discontinuity at the nematic/isotropic transition temperature (TNI) is not present in the new data. On the other hand, in the nematic phase, the new experiments largely confirm the previous observations of single-exponential FRS decay and the non-Arrhenius temperature dependence of the nematic diffusion coefficients close to TNI. Finally, we have also observed that the decrease in the diffusion anisotropy with increasing temperature can be correlated with the 5CB nematic order parameter S(T) over the full nematic temperature range.Comment: Accepted in the Journal of Chemical Physics; to appear February 200

    The Amundsen Sea Polynya International Research Expedition (ASPIRE)

    Get PDF
    In search of an explanation for some of the greenest waters ever seen in coastal Antarctica and their possible link to some of the fastest melting glaciers and declining summer sea ice, the Amundsen Sea Polynya International Research Expedition (ASPIRE) challenged the capabilities of the US Antarctic Program and RVIB Nathaniel B. Palmer during Austral summer 2010–2011. We were well rewarded by both an extraordinary research platform and a truly remarkable oceanic setting. Here we provide further insights into the key questions that motivated our sampling approach during ASPIRE and present some preliminary findings, while highlighting the value of the Palmer for accomplishing complex, multifaceted oceanographic research in such a challenging environment

    The HARE chip for efficient time-resolved serial synchrotron crystallography

    No full text
    Serial synchrotron crystallography (SSX) is an emerging technique for static and time-resolved protein structure determination. Using specifically patterned silicon chips for sample delivery, the `hit-and-return' (HARE) protocol allows for efficient time-resolved data collection. The specific pattern of the crystal wells in the HARE chip provides direct access to many discrete time points. HARE chips allow for optical excitation as well as on-chip mixing for reaction initiation, making a large number of protein systems amenable to time-resolved studies. Loading of protein microcrystals onto the HARE chip is streamlined by a novel vacuum loading platform that allows fine-tuning of suction strength while maintaining a humid environment to prevent crystal dehydration. To enable the widespread use of time-resolved serial synchrotron crystallography (TR-SSX), detailed technical descriptions of a set of accessories that facilitate TR-SSX workflows are provided

    Freshwater distributions and water mass structure in the Amundsen Sea Polynya region, Antarctica

    Get PDF
    We present the first densely-sampled hydrographic survey of the Amundsen Sea Polynya (ASP) region, including a detailed characterization of its freshwater distributions. Multiple components contribute to the freshwater budget, including precipitation, sea ice melt, basal ice shelf melt, and iceberg melt, from local and non-local sources. We used stable oxygen isotope ratios in seawater (δ18O) to distinguish quantitatively the contributions from sea ice and meteoric-derived sources. Meteoric fractions were high throughout the winter mixed layer (WML), with maximum values of 2–3% (±0.5%). Because the ASP region is characterized by deep WMLs, column inventories of total meteoric water were also high, ranging from 10–13 m (±2 m) adjacent to the Dotson Ice Shelf (DIS) and in the deep trough to 7–9 m (±2 m) in shallower areas. These inventories are at least twice those reported for continental shelf waters near the western Antarctic Peninsula. Sea ice melt fractions were mostly negative, indicating net (annual) sea ice formation, consistent with this area being an active polynya. Independently determined fractions of subsurface glacial meltwater (as one component of the total meteoric inventory) had maximum values of 1–2% (±0.5%), with highest and shallowest maximum values at the DIS outflow (80–90 m) and in iceberg-stirred waters (150–200 m). In addition to these upwelling sites, contributions of subsurface glacial meltwater could be traced at depth along the ~ 27.6 isopycnal, from which it mixes into the WML through various processes. Our results suggest a quasi-continuous supply of melt-laden iron-enriched seawater to the euphotic zone of the ASP and help to explain why the ASP is Antarctica’s most biologically productive polynya per unit area

    Near-field iron and carbon chemistry of non-buoyant hydrothermal plume particles, Southern East Pacific Rise 15°S

    Get PDF
    Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Marine Chemistry 201 (2018): 183-197, doi:10.1016/j.marchem.2018.01.011.Iron (Fe)-poor surface waters limit phytoplankton growth and their ability to remove carbon (C) from the atmosphere and surface ocean. Over the past few decades, research has focused on constraining the global Fe cycle and its impacts on the global C cycle. Hydrothermal vents have become a highly debated potential source of Fe to the surface ocean. Two main mechanisms for transport of Fe over long distances have been proposed: Fe-bearing nanoparticles and organic C complexation with Fe in the dissolved (dFe) and particulate (pFe) pools. However, the ubiquity and importance of these processes is unknown at present, and very few vents have been investigated for Fe-Corg interactions or the transport of such materials away from the vent. Here we describe the near-field contributions (first ~100 km from ridge) of pFe and Corg to the Southern East Pacific Rise (SEPR) plume, one of the largest known hydrothermal plume features in the global ocean. Plume particles (> 0.2 μm) were collected as part of the U.S. GEOTRACES Eastern Pacific Zonal Transect cruise (GP16) by in-situ filtration. Sediment cores were also collected to investigate the properties of settling particles. In this study, X-ray absorption near edge structure (XANES) spectroscopy was used in two complementary X-ray synchrotron approaches, scanning transmission X-ray microscopy (STXM) and X-ray microprobe, to investigate the Fe and C speciation of particles within the near-field non-buoyant SEPR plume. When used in concert, STXM and X-ray microprobe provide fine-scale and representative information on particle morphology, elemental co-location, and chemical speciation. Bulk chemistry depth profiles for particulate Corg (POC), particulate manganese (pMn), and pFe indicated that the source of these materials to the non-buoyant plume is hydrothermal in origin. The plume particles at stations within the first ~100 km down-stream of the ridge were composites of mineral (oxidized Fe) and biological materials (organic C, Corg). Iron chemistry in the plume and in the core-top suspended sediment fluff layer were both dominated by Fe(III) phases, such as Fe(III) oxyhydroxides and Fe(III) phyllosilicates. Particulate sulfur (pS) was a rare component of our plume and sediment samples. When pS was detected, it was in the form of an Fe sulfide mineral phase, composing ≤ 0.4% of the Fe on a per atom basis. The resuspended sediment fluff layer contained a mixture of inorganic (coccolith fragments) and Corg bearing (lipid-rich biofilm-like) materials. The particle morphology and co-location of C and Fe in the sediment was different from that in plume particles. This indicates that if the Fe-Corg composite particles settle rapidly to the sediments, then they experience strong alteration during settling and/or within the sediments. Overall, our observations indicate that the particles within the first ~ 100 km of the laterally advected plume are S-depleted, Fe(III)-Corg composites indicative of a chemically oxidizing plume with strong biological modification. These findings confirm that the Fe-Corg relationships observed for non-buoyant plume particles within ~ 100 m of the vent site are representative of particles within this region of the non-buoyant plume (~100 km). These findings also point to dynamic alteration of Fe-Corg bearing particles during transport and settling. The specific biogeochemical processes at play, and the implications for nutrient cycling in the ocean are currently unknown and represent an area of future investigation
    corecore