3,796 research outputs found

    "Boring formal methods" or "Sherlock Holmes deduction methods"?

    Full text link
    This paper provides an overview of common challenges in teaching of logic and formal methods to Computer Science and IT students. We discuss our experiences from the course IN3050: Applied Logic in Engineering, introduced as a "logic for everybody" elective course at at TU Munich, Germany, to engage pupils studying Computer Science, IT and engineering subjects on Bachelor and Master levels. Our goal was to overcome the bias that logic and formal methods are not only very complicated but also very boring to study and to apply. In this paper, we present the core structure of the course, provide examples of exercises and evaluate the course based on the students' surveys.Comment: Preprint. Accepted to the Software Technologies: Applications and Foundations (STAF 2016). Final version published by Springer International Publishing AG. arXiv admin note: substantial text overlap with arXiv:1602.0517

    Is copyright blind to the visual?

    Get PDF
    This article argues that, with respect to the copyright protection of works of visual art, the general uneasiness that has always pervaded the relationship between copyright law and concepts of creativity produces three anomalous results. One of these is that copyright lacks much in the way of a central concept of 'visual art' and, to the extent that it embraces any concept of the 'visual', it is rooted in the rhetorical discourse of the Renaissance. This means that copyright is poorly equipped to deal with modern developments in the visual arts. Secondly, the pervasive effect of rhetorical discourse appears to have made it particularly difficult for copyright law to strike a meaningful balance between protecting creativity and permitting its use in further creative works. Thirdly, just when rhetorical discourse might have been useful in identifying the significance and materiality of the unique one-off work of visual art, copyright law chooses to ignore its implications

    Optical absorption and single-particle excitations in the 2D Holstein t-J model

    Full text link
    To discuss the interplay of electronic and lattice degrees of freedom in systems with strong Coulomb correlations we have performed an extensive numerical study of the two-dimensional Holstein t-J model. The model describes the interaction of holes, doped in a quantum antiferromagnet, with a dispersionsless optical phonon mode. We apply finite-lattice Lanczos diagonalization, combined with a well-controlled phonon Hilbert space truncation, to the Hamiltonian. The focus is on the dynamical properties. In particular we have evaluated the single-particle spectral function and the optical conductivity for characteristic hole-phonon couplings, spin exchange interactions and phonon frequencies. The results are used to analyze the formation of hole polarons in great detail. Links with experiments on layered perovskites are made. Supplementary we compare the Chebyshev recursion and maximum entropy algorithms, used for calculating spectral functions, with standard Lanczos methods.Comment: 32 pages, 12 figures, submitted to Phys. Rev.

    No good surprises: intending lecturers' preconceptions and initial experiences of further education

    Get PDF
    Current initiatives to promote lifelong learning and a broader inclusiveness in post-16 education have focused attention on further education (FE). The article examines the experiences and reactions of 41 intending lecturers studying full-time for a Postgraduate Certificate in Further Education and Training (PGCET), as they enter FE colleges on teaching practice and encounter FE students for the first time. It argues that the sector may have something to learn from the contrast between these intending lecturers' expectations and their subsequent experiences, and that attempts to address problems which are endemic within the current FE sector by initiatives to improve teacher competence, such as the Further Education National Training Organisation (FENTO)'s recently introduced FE teacher training standards, are inadequate and misdirected

    Import of cytochrome c into mitochondria

    Get PDF
    The import of cytochrome c into mitochondria can be resolved into a number of discrete steps. Here we report on the covalent attachment of heme to apocytochrome c by the enzyme cytochrome c heme lyase in mitochondria from Neurospora crassa. A new method was developed to measure directly the linkage of heme to apocytochrome c. This method is independent of conformational changes in the protein accompanying heme attachment. Tryptic peptides of [35S]cysteine-labelled apocytochrome c, and of enzymatically formed holocytochrome c, were resolved by reverse-phase HPLC. The cysteine-containing peptide to which heme was attached eluted later than the corresponding peptide from apocytochrome c and could be quantified by counting 35S radioactivity as a measure of holocytochrome c formation. Using this procedure, the covalent attachment of heme to apocytochrome c, which is dependent on the enzyme cytochrome c heme lyase, could be measured. Activity required heme (as hemin) and could be reversibly inhibited by the analogue deuterohemin. Holocytochrome c formation was stimulated 5–10-fold by NADH > NADPH > glutathione and was independent of a potential across the inner mitochondrial membrane. NADH was not required for the binding of apocytochrome c to mitochondria and was not involved in the reduction of the cysteine thiols prior to heme attachment. Holocytochrome c formation was also dependent on a cytosolic factor that was necessary for the heme attaching step of cytochrome c import. The factor was a heat-stable, protease-insensitive, low-molecular-mass component of unknown function. Cytochrome c heme lyase appeared to be a soluble protein located in the mitochondrial intermembrane space and was distinct from the previously identified apocytochrome c binding protein having a similar location. A model is presented in which the covalent attachment of heme by cytochrome c heme lyase also plays an essential role in the import pathway of cytochrome c

    Molecular Refinement of Clinical Staging in Hepatocellular Carcinoma Patients Evaluated for Potentially Curative Therapies

    Get PDF
    Abstract: Aim: VEGF and AFP mRNA determinations in the blood are promising prognostic factors for patients with HCC. This study explores their potential prognostic synergy in a cohort of HCC patients evaluated for potentially curative therapies. Methods: One hundred twenty-four patients with a diagnosis of HCC were prospectively enrolled in the study. Inclusion criteria were: (a) histological diagnosis of HCC and assessment of tumour grade and (b) determination of AFP mRNA status and VEGF levels in the blood before therapy. Results: At baseline evaluation, 40% of the study group had AFP mRNA in the blood (AFP mRNA positive), and 35% had VEGF > 23 pg ml(-1) (VEGF positive). Surgery was performed in 58 patients (47%), 54 (43%) had tumour ablation, and 12 had chemoembolisation (10%). Median follow-up and survival of the study group were 19 and 26 months (range, 1 to 60), respectively. The association of AFP mRNA and VEGF proved to be prognostically more accurate than their single use in discriminating the risk of death (ROC curve analysis) and survival probability (Cox analysis). In particular, we identified 3 main molecular stages (p < 0,0001): both negative (3-year survival = 63%), one positive (3-year survival = 40%), both positive (3-year survival = 16%). Multivariate analysis identified BCLC staging, surgery, and molecular staging as the most significant survival variables. Conclusions: The preoperative determination of AFP mRNA status and VEGF may potentially refine the prognostic evaluation of HCC patients and improve the selection process for potentially curative therapies

    Functional and symptom impact of trametinib versus chemotherapy in BRAF V600E advanced or metastatic melanoma: quality-of-life analyses of the METRIC study

    Get PDF
    We report the first quality-of-life assessment of a MEK inhibitor in metastatic melanoma from a phase III study. Trametinib prolonged progression-free survival and improved overall survival versus chemotherapy in patients with BRAF V600 mutation-positive melanoma. Less functional impairment, smaller declines in health status, and less exacerbation of symptoms were observed with trametini

    The yeast P5 type ATPase, Spf1, regulates manganese transport into the endoplasmic reticulum

    Get PDF
    The endoplasmic reticulum (ER) is a large, multifunctional and essential organelle. Despite intense research, the function of more than a third of ER proteins remains unknown even in the well-studied model organism Saccharomyces cerevisiae. One such protein is Spf1, which is a highly conserved, ER localized, putative P-type ATPase. Deletion of SPF1 causes a wide variety of phenotypes including severe ER stress suggesting that this protein is essential for the normal function of the ER. The closest homologue of Spf1 is the vacuolar P-type ATPase Ypk9 that influences Mn2+ homeostasis. However in vitro reconstitution assays with Spf1 have not yielded insight into its transport specificity. Here we took an in vivo approach to detect the direct and indirect effects of deleting SPF1. We found a specific reduction in the luminal concentration of Mn2+ in ∆spf1 cells and an increase following it’s overexpression. In agreement with the observed loss of luminal Mn2+ we could observe concurrent reduction in many Mn2+-related process in the ER lumen. Conversely, cytosolic Mn2+-dependent processes were increased. Together, these data support a role for Spf1p in Mn2+ transport in the cell. We also demonstrate that the human sequence homologue, ATP13A1, is a functionally conserved orthologue. Since ATP13A1 is highly expressed in developing neuronal tissues and in the brain, this should help in the study of Mn2+-dependent neurological disorders

    Changes in the Brain Microstructure of Children with Primary Monosymptomatic Nocturnal Enuresis: A Diffusion Tensor Imaging Study

    Get PDF
    Background: Primary monosymptomatic nocturnal enuresis (PMNE) is a common disorder in school-aged children. Previous studies have suggested that a developmental delay might play a role in the pathology of children with PMNE. However, microstructural abnormalities in the brains of these children have not been thoroughly investigated. Methodology/Principal Findings: In this work, we evaluated structural changes in the brains of children with PMNE using diffusion tensor imaging (DTI). Two groups consisting of 26 children with PMNE and 26 healthy controls were scanned using magnetic resonance DTI. The diffusion parameters of fractional anisotropy (FA) and mean diffusivity (MD) were subjected to whole-brain, voxel-wise group comparisons using statistical parametric mapping (SPM). When compared to healthy subjects, children with PMNE showed both a decrease in FA and an increase in MD in the thalamus. MD also increased in the frontal lobe, the anterior cingulate cortex and the insula; these areas are all involved in controlling micturition. The significant changes seen in the thalamus could affect both urine storage and arousal from sleep. Conclusions/Significance: The microstructure abnormalities were observed in the thalamus, the medial frontal gyrus, the anterior cingulate cortex and the insula, which are involved in micturition control network. This indicates developmenta
    • …
    corecore