5 research outputs found

    Production of Antimicrobial Agent from Marine Bacteria Isolated from Mediterranean

    Get PDF
    Abstract: One hundred and forty marine isolates were obtained from various marine samples at different depths including seawater, sediment, algae, coral and rhizosphere of mangrove from both Mediterranean and Red sea, Egypt. After screening of the marine microbial isolates for the antimicrobial activity against pathogenic test strains; one of the best isolates that showed activity against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa was selected for both phenotypic and phylogenetic analysis. The results showed that the bacterium is Gram positive bacilli and it showed 99% homology with Bacillus licheniformis. The optimum antibiotic biosynthesis was obtained after 72 h of incubation period, agitation speeds at 180 rpm, initial fermentation pH at 7.0, incubation temperature at 30°C, inoculums size of 0.5 % (v/v), using glucose as a carbon source at concentration of 0.2% (w/v) and soybean as a nitrogen source at concentration of 1 % (w/v)

    Insights into Asparaginase from Endophytic Fungus Lasiodiplodia theobromae: Purification, Characterization and Antileukemic Activity

    No full text
    Endobiotic fungi are considered as a reservoir of numerous active metabolites. Asparaginase is used as an antileukemic drug specially to treat acute lymphoblastic leukaemia. The presented study aims to optimize the media conditions, purify, characterize, and test the antileukemic activity of the asparaginase induced from Lasiodiplodia theobromae. The culture medium was optimized using an experiment designed by The Taguchi model with an activity ranging from 10 to 175 IU/mL. Asparaginase was induced with an activity of 315 IU/mL. Asparaginase was purified with a specific activity of 468.03 U/mg and total activity of 84.4 IU/mL. The purified asparaginase showed an approximate size of 70 kDa. The purified asparaginase showed an optimum temperature of 37 °C and an optimum pH of 6. SDS reduced the activity of asparaginase to 0.65 U/mL while the used ionic surfactants enhanced the enzyme activity up to 151.92 IU/mL. The purified asparaginase showed a Km of 9.37 µM and Vmax of 127.00 µM/mL/min. The purified asparaginase showed an IC50 of 35.2 ± 0.7 IU/mL with leukemic M-NFS-60 cell lines and CC50 of 79.4 ± 1.9 IU/mL with the normal WI-38 cell line. The presented study suggests the use of endophytic fungi as a sustainable source for metabolites such as asparaginase, provides an opportunity to develop a facile, eco-friendly, cost-effective, and rapid synthesis of antileukemic drugs, which have the potential to be used as alternative and reliable sources for potent anticancer agents

    GC-MS analysis and in-vitro hypocholesterolemic, anti-rotavirus, anti-human colon carcinoma activities of the crude extract of a Japanese Ganoderma spp

    Get PDF
    Background and objective Medicinal mushrooms are mines of various biologically active compounds. Therefore, chemical analysis and in-vitro evaluation of some biological activities of the Japanese originated mushroom Ganoderma spp. were conducted. Materials and methods Extraction of the fruiting bodies of Ganoderma spp. was accomplished using 80% methanol. This extract was investigated for its in-vitro cholesterol-lowering activity, anti-rotavirus effect, and anti-human colon cancer influence. Moreover, a gas chromatography–mass spectrometry analysis for this extract was performed. Results and conclusion The gas chromatography–mass spectrometry analysis resulted in the detection of 39 compounds, which were generally saturated and unsaturated fatty acids, and alkenes. The crude extract exhibited a promising in-vitro cholesterol-lowering activity (100±0%) after 96 h of incubation at room temperature. The same crude extract showed a moderate anti-rotavirus SA-11 strain effect with a therapeutic index of 9.3. Moreover, Ganoderma spp. extract displayed a strong activity toward HCT116 human colon carcinoma cell line, resulting in a cytotoxicity of 84.03±0.93% on HCT116 cell line monolayers. Ganoderma spp. crude extract represents a promising source of biologically active compounds that could by further investigations represent support and/or alternative to the currently used drugs

    Insights into the Bioprospecting of the Endophytic Fungi of the Medicinal Plant Palicourea rigida Kunth (Rubiaceae): Detailed Biological Activities

    No full text
    A multitude of plants from the Brazilian savanna are known for their medicinal properties. Many plants contain endophytic fungi, which lead to the production of bioactive compounds by both the fungi and their hosts. This study investigated the bioprospecting of endophytic fungi recovered from the leaves of Palicourea rigida, a native medicinal plant of the Brazilian savanna. Four fungal taxa (Colletotrichum sp. SXS649, Pestalotiopsis sp. SXS650, the order Botryosphaeriales SXS651, and Diaporthe sp. SXS652) were recovered. The phenolic, flavonoid, extracellular degrading enzymes (amylase, cellulase, protease, and tannase) and antioxidant activity of these taxa were determined. Evaluation of the antimicrobial activity showed that the Botryosphaeriales SXS651 extract displays a minimum inhibitory concentration (MIC) of 23.20 mg mL−1 against Staphylococcus epidermidis and Pseudomonas aeruginosa, and the Diaporthe sp. SXS652 extract exhibited an MIC of 27.00 mg mL−1 against Escherichia coli. The Colletotrichum sp. SXS649 isolate inhibited tumors in potato discs by 69% at a concentration of 9.70 mg mL−1. All isolates had potential bioremediation criteria against soil contaminated with soybean oil, as proved by a high percentage of germination of Lactuca sativa and a reduction in phytotoxicity. Furthermore, the taxa under investigation demonstrated antagonistic action to phytopathogenic fungi, namely, Aspergillus niger, Inonotus rickii, Pestalotiopsis mangiferae, and Coniophora puteana, with an inhibition range between 34.2% and 76.9%. The preliminary toxicity assessment showed that all isolates possessed an LC50 of less than 100 mg mL−1 to the microcrustacean Artemia salina. These results indicate that the endophytic fungi of the Brazilian savanna are promising candidates for biotechnological and industrial applications and, in agricultural applications, for the biological control of phytopathogenic fungi
    corecore