15 research outputs found

    Mixed Models with n>1 and Large Scale Structure constraints

    Get PDF
    Recent data on CBR anisotropies show a Doppler peak higher than expected in CDM cosmological models, if the spectral index n=1n=1. However, CDM and LCDM models with n>1 can hardly be consistent with LSS data. Mixed models, instead, whose transfer function is naturally steeper because of free--streaming in the hot component, may become consistent with data if n>1, when Omega_h is large. This is confirmed by our detailed analysis, extended both to models with a hot component whose momentum space distribution had a thermal origin (like massive neutrinos), and to models with a non--cold component arising from heavier particle decay. In this work we systematically search models which fulfill all constraints which can be implemented at the linear level. We find that a stringent linear constraint arises from fitting the extra-power parameter Gamma. Other significant constraints arise comparing the expected abundances of galaxy clusters and high-z systems with observational data. Keeping to models with Gamma \geq 0.13, a suitable part of the space parameter still allows up to \sim 30% of hot component (it is worth outlining that our stringent criteria allow only models with 0.10 \mincir Omega_h \mincir 0.16, if n \leq 1). We also outline that models with such large non--cold component would ease the solution of the so--called baryon catastrophe in galaxy clusters.Comment: 28 pages + 9 figures, uses elsart.sty, to be published in New Astronom

    TOI-942b: A Prograde Neptune in a ∼ 60 Myr Old Multi-transiting System

    Get PDF
    Mapping the orbital obliquity distribution of young planets is one avenue toward understanding mechanisms that sculpt the architectures of planetary systems. TOI-942 is a young field star, with an age of ∼60 Myr, hosting a planetary system consisting of two transiting Neptune-sized planets in 4.3 and 10.1 day period orbits. We observed the spectroscopic transits of the inner Neptune TOI-942b to determine its projected orbital obliquity angle. Through two partial transits, we find the planet to be in a prograde orbit, with a projected obliquity angle of |λ| = 1-33+41 deg. In addition, incorporating the light curve and the stellar rotation period, we find the true 3D obliquity to be 2-23+27 deg. We explored various sources of uncertainties specific to the spectroscopic transits of planets around young active stars, and showed that our reported obliquity uncertainty fully encompassed these effects. TOI-942b is one of the youngest planets to have its obliquity characterized, and one of even fewer residing in a multi-planet system. The prograde orbital geometry of TOI-942b is in line with systems of similar ages, none of which have yet been identified to be in strongly misaligned orbits

    Revisiting the HD 21749 planetary system with stellar activity modelling

    Get PDF
    HD 21749 is a bright (V = 8.1 mag) K dwarf at 16 pc known to host an inner terrestrial planet HD 21749c as well as an outer sub-Neptune HD 21749b, both delivered by Transiting Exoplanet Survey Satellite (TESS). Follow-up spectroscopic observations measured the mass of HD 21749b to be 22.7 ± 2.2 M with a density of 7.0^{+1.6}_{-1.3} g cm-3, making it one of the densest sub-Neptunes. However, the mass measurement was suspected to be influenced by stellar rotation. Here, we present new high-cadence PFS RV data to disentangle the stellar activity signal from the planetary signal. We find that HD 21749 has a similar rotational time-scale as the planet's orbital period, and the amplitude of the planetary orbital RV signal is estimated to be similar to that of the stellar activity signal. We perform Gaussian process regression on the photometry and RVs from HARPS and PFS to model the stellar activity signal. Our new models reveal that HD 21749b has a radius of 2.86 ± 0.20 R, an orbital period of 35.6133 ± 0.0005 d with a mass of Mb = 20.0 ± 2.7 M and a density of 4.8^{+2.0}_{-1.4} g cm-3 on an eccentric orbit with e = 0.16 ± 0.06, which is consistent with the most recent values published for this system. HD 21749c has an orbital period of 7.7902 ± 0.0006 d, a radius of 1.13 ± 0.10 R, and a 3σ mass upper limit of 3.5 M. Our Monte Carlo simulations confirm that without properly taking stellar activity signals into account, the mass measurement of HD 21749b is likely to arrive at a significantly underestimated error bar

    TOI-1130: A photodynamical analysis of a hot Jupiter in resonance with an inner low-mass planet

    Get PDF
    The TOI-1130 is a known planetary system around a K-dwarf consisting of a gas giant planet, TOI-1130 c on an 8.4-day orbit that is accompanied by an inner Neptune-sized planet, TOI-1130 b, with an orbital period of 4.1 days. We collected precise radial velocity (RV) measurements of TOI-1130 with the HARPS and PFS spectrographs as part of our ongoing RV follow-up program. We performed a photodynamical modeling of the HARPS and PFS RVs, along with transit photometry from the Transiting Exoplanet Survey Satellite (TESS) and the TESS Follow-up Observing Program (TFOP). We determined the planet masses and radii of TOI-1130 b and TOI-1130 c to be Mb = 19.28 \ub1 0.97M⊕ and Rb = 3.56 \ub1 0.13 R⊕, and Mc = 325.59 \ub1 5.59M⊕ and Rc = 13.32-1.41+1.55 R⊕, respectively. We have spectroscopically confirmed the existence of TOI-1130 b, which had previously only been validated. We find that the two planets have orbits with small eccentricities in a 2:1 resonant configuration. This is the first known system with a hot Jupiter and an inner lower mass planet locked in a mean-motion resonance. TOI-1130 belongs to the small, yet growing population of hot Jupiters with an inner low-mass planet that poses a challenge to the pathway scenario for hot Jupiter formation. We also detected a linear RV trend that is possibly due to the presence of an outer massive companion

    TOI-969: a late-K dwarf with a hot mini-Neptune in the desert and an eccentric cold Jupiter

    Get PDF
    Context. The current architecture of a given multi-planetary system is a key fingerprint of its past formation and dynamical evolution history. Long-term follow-up observations are key to complete their picture. Aims. In this paper, we focus on the confirmation and characterization of the components of the TOI-969 planetary system, where TESS detected a Neptune-size planet candidate in a very close-in orbit around a late K-dwarf star. Methods. We use a set of precise radial velocity observations from HARPS, PFS, and CORALIE instruments covering more than two years in combination with the TESS photometric light curve and other ground-based follow-up observations to confirm and characterize the components of this planetary system. Results. We find that TOI-969 b is a transiting close-in (Pb ∼ 1.82 days) mini-Neptune planet (Formula Presented), placing it on the lower boundary of the hot-Neptune desert (Teq,b = 941 \ub1 31 K). The analysis of its internal structure shows that TOI-969 b is a volatile-rich planet, suggesting it underwent an inward migration. The radial velocity model also favors the presence of a second massive body in the system, TOI-969 c, with a long period of (Formula Presented) days, a minimum mass of (Formula Presented), and a highly eccentric orbit of (Formula Presented). Conclusions. The TOI-969 planetary system is one of the few around K-dwarfs known to have this extended configuration going from a very close-in planet to a wide-separation gaseous giant. TOI-969 b has a transmission spectroscopy metric of 93 and orbits a moderately bright (G = 11.3 mag) star, making it an excellent target for atmospheric studies. The architecture of this planetary system can also provide valuable information about migration and formation of planetary systems

    TESS Reveals a Short-period Sub-Neptune Sibling (HD 86226c) to a Known Long-period Giant Planet

    Get PDF
    The Transiting Exoplanet Survey Satellite mission was designed to find transiting planets around bright, nearby stars. Here, we present the detection and mass measurement of a small, short-period (≈4 days) transiting planet around the bright (V = 7.9), solar-type star HD 86226 (TOI-652, TIC 22221375), previously known to host a long-period (∼1600 days) giant planet. HD 86226c (TOI-652.01) has a radius of 2.16 0.08 R ⊕ and a mass of M ⊕, based on archival and new radial velocity data. We also update the parameters of the longer-period, not-known-to-transit planet, and find it to be less eccentric and less massive than previously reported. The density of the transiting planet is 3.97 g cm-3, which is low enough to suggest that the planet has at least a small volatile envelope, but the mass fractions of rock, iron, and water are not well-constrained. Given the host star brightness, planet period, and location of the planet near both the "radius gap"and the "hot Neptune desert,"HD 86226c is an interesting candidate for transmission spectroscopy to further refine its composition

    TESS discovery of a super-earth and three sub-neptunes hosted by the bright, sunlike star HD 108236

    Get PDF
    We report the discovery and validation of four extrasolar planets hosted by the nearby, bright, Sun-like (G3V) star HD 108236 using data from the Transiting Exoplanet Survey Satellite (TESS). We present transit photometry, reconnaissance, and precise Doppler spectroscopy, as well as high-resolution imaging, to validate the planetary nature of the objects transiting HD 108236, also known as the TESS Object of Interest (TOI) 1233. The innermost planet is a possibly rocky super-Earth with a period of 3.79523+0.00047-0.00044 days and has a radius of 1.586 ± 0.098 R⊗.The outer planets are sub-Neptunes, with potential gaseous envelopes, having radii of 2.068+0.10-0.091 R⊗, 2.72 ± 0.11 R⊗, and 3.12+0.13-0.12 R⊗ and periods of 6.20370+0.00064-0.00052 days, 14.17555+0.00099-0.0011 days, and 19.5917+0.0022-0.0020 days, respectively. With V and Ks magnitudes of 9.2 and 7.6, respectively, the bright host star makes the transiting planets favorable targets for mass measurements and, potentially, for atmospheric characterization via transmission spectroscopy. HD 108236 is the brightest Sun-like star in the visual (V ) band known to host four or more transiting exoplanets. The discovered planets span a broad range of planetary radii and equilibrium temperatures and share a common history of insolation from a Sun-like star (R∗ = 0.888 ± 0.017 R⊙, Teff = 5730 ± 50 K), making HD 108236 an exciting, opportune cosmic laboratory for testing models of planet formation and evolution
    corecore