709 research outputs found

    Protection of serially connected solar cells against open circuits by the use of shunting diode Patent

    Get PDF
    Maintaining current flow through solar cells with open connection using shunting diod

    Universal velocity distributions in an experimental granular fluid

    Full text link
    We present experimental results on the velocity statistics of a uniformly heated granular fluid, in a quasi-2D configuration. We find the base state, as measured by the single particle velocity distribution f(c)f(c), to be universal over a wide range of filling fractions and only weakly dependent on all other system parameters. There is a consistent overpopulation in the distribution's tails, which scale as fexp(const.×c3/2)f\propto\exp(\mathrm{const.}\times c^{-3/2}). More importantly, the high probability central region of f(c)f(c), at low velocities, deviates from a Maxwell-Boltzmann by a second order Sonine polynomial with a single adjustable parameter, in agreement with recent theoretical analysis of inelastic hard spheres driven by a stochastic thermostat. To our knowledge, this is the first time that Sonine deviations have been measured in an experimental system.Comment: 13 pages, 15 figures, with minor corrections, submitted to Phys. Rev.

    Caging dynamics in a granular fluid

    Full text link
    We report an experimental investigation of the caging motion in a uniformly heated granular fluid, for a wide range of filling fractions, ϕ\phi. At low ϕ\phi the classic diffusive behavior of a fluid is observed. However, as ϕ\phi is increased, temporary cages develop and particles become increasingly trapped by their neighbors. We statistically analyze particle trajectories and observe a number of robust features typically associated with dense molecular liquids and colloids. Even though our monodisperse and quasi-2D system is known to not exhibit a glass transition, we still observe many of the precursors usually associated with glassy dynamics. We speculate that this is due to a process of structural arrest provided, in our case, by the presence of crystallization.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let

    The story of my life

    No full text

    Granular circulation in a cylindrical pan: simulations of reversing radial and tangential flows

    Full text link
    Granular flows due to simultaneous vertical and horizontal excitations of a flat-bottomed cylindrical pan are investigated using event-driven molecular dynamics simulations. In agreement with recent experimental results, we observe a transition from a solid-like state, to a fluidized state in which circulatory flow occurs simultaneously in the radial and tangential directions. By going beyond the range of conditions explored experimentally, we find that each of these circulations reverse their direction as a function of the control parameters of the motion. We numerically evaluate the dynamical phase diagram for this system and show, using a simple model, that the solid-fluid transition can be understood in terms of a critical value of the radial acceleration of the pan bottom; and that the circulation reversals are controlled by the phase shift relating the horizontal and vertical components of the vibrations. We also discuss the crucial role played by the geometry of the boundary conditions, and point out a relationship of the circulation observed here and the flows generated in vibratory conveyors.Comment: 10 pages, 8 figure

    Distinct amino acid compositional requirements for formation and maintenance of the [PSI+] prion in yeast

    Get PDF
    Multiple yeast prions have been identified that result from the structural conversion of proteins into a self-propagating amyloid form. Amyloid-based prion activity in yeast requires a series of discrete steps. First, the prion protein must form an amyloid nucleus that can recruit and structurally convert additional soluble proteins. Subsequently, maintenance of the prion during cell division requires fragmentation of these aggregates to create new heritable propagons. For the Saccharomyces cerevisiae prion protein Sup35, these different activities are encoded by different regions of the Sup35 prion domain. An N-terminal glutamine/asparagine-rich nucleation domain is required for nucleation and fiber growth, while an adjacent oligopeptide repeat domain is largely dispensable for prion nucleation and fiber growth but is required for chaperone-dependent prion maintenance. Although prion activity of glutamine/asparagine-rich proteins is predominantly determined by amino acid composition, the nucleation and oligopeptide repeat domains of Sup35 have distinct compositional requirements. Here, we quantitatively define these compositional requirements in vivo. We show that aromatic residues strongly promote both prion formation and chaperone-dependent prion maintenance. In contrast, nonaromatic hydrophobic residues strongly promote prion formation but inhibit prion propagation. These results provide insight into why some aggregation-prone proteins are unable to propagate as prions

    Shocks in supersonic sand

    Full text link
    We measure time-averaged velocity, density, and temperature fields for steady granular flow past a wedge and calculate a speed of granular pressure disturbances (sound speed) equal to 10% of the flow speed. The flow is supersonic, forming shocks nearly identical to those in a supersonic gas. Molecular dynamics simulations of Newton's laws and Monte Carlo simulations of the Boltzmann equation yield fields in quantitative agreement with experiment. A numerical solution of Navier-Stokes-like equations agrees with a molecular dynamics simulation for experimental conditions excluding wall friction.Comment: 4 pages, 5 figure

    Stability of the Autism Diagnostic Interview—Revised from Pre-School to Elementary School Age in Children with Autism Spectrum Disorders

    Get PDF
    This study examined the stability of scores on the ADI-R from pre-school to elementary school age in children with autism spectrum disorders (ASD). Participants were 35 children who, at T1, all had a clinical diagnosis of ASD. On initial assessment (mean age 3.5 years; SD 0.6), all met ADI-R algorithm criteria for autism. ADI-R assessments were repeated at follow up (FU; mean age 10.5 years; SD 0.8). Changes in ADI-R total, domain and ADI-R algorithm item scores were assessed. Twentyeight children continued to score above the ADI-R cut-off for autism at FU, although significant decreases in ADI-R domain and item scores were also found. In conclusion, while classification of children according to ADI-R criteria, generally remained stable between pre-school and elementary school age, many children demonstrated significant improvements in symptom severity
    corecore