4 research outputs found

    FUTURES-AMR: Towards an Adaptive Mesh Refinement Framework for Geosimulations

    Get PDF
    Adaptive Mesh Refinement (AMR) is a computational technique used to reduce the amount of computation and memory required in scientific simulations. Geosimulations are scientific simulations using geographic data, routinely used to predict outcomes of urbanization in urban studies. However, the lack of support for AMR techniques with geosimulations limits exploring prediction outcomes at multiple resolutions. In this paper, we propose an adaptive mesh refinement framework FUTURES-AMR, based on static user-defined policies to enable multi-resolution geosimulations. We develop a prototype for the cellular automaton based urban growth simulation FUTURES by exploiting static and dynamic mesh refinement techniques in conjunction with the Patch Growing Algorithm (PGA). While, the static refinement technique supports a statically defined fixed resolution mesh simulation at a location, the dynamic refinement technique supports dynamically refining the resolution based on simulation outcomes at runtime. Further, we develop two approaches - asynchronous AMR and synchronous AMR, suitable for parallel execution in a distributed computing environment with varying support for solution integration of the multi-resolution results. Finally, using the FUTURES-AMR framework with different policies in an urban study, we demonstrate reduced execution time, and low memory overhead for a multi-resolution simulation

    Modeling Landowner Interactions and Development Patterns at the Urban Fringe

    Get PDF
    Population growth and unrestricted development policies are driving low-density urbanization and fragmentation of peri-urban landscapes across North America. While private individuals own most undeveloped land, little is known about how their decision-making processes shape landscape-scale patterns of urbanization over time. We introduce a hybrid agent-based modeling (ABM) – cellular automata (CA) modeling approach, developed for analyzing dynamic feedbacks between landowners’ decisions to sell their land for development, and resulting patterns of landscape fragmentation. Our modeling approach builds on existing conceptual frameworks in land systems modeling by integrating an ABM into an established grid-based land-change model – FUTURES. The decision-making process within the ABM involves landowner agents whose decision to sell their land to developers is a function of heterogeneous preferences and peer-influences (i.e., spatial neighborhood relationships). Simulating landowners’ decision to sell allows an operational link between the ABM and the CA module. To test our hybrid ABM-CA approach, we used empirical data for a rapidly growing region in North Carolina for parameterization. We conducted a sensitivity analysis focusing on the two most relevant parameters—spatial actor distribution and peer-influence intensity—and evaluated the dynamic behavior of the model simulations. The simulation results indicate different peer-influence intensities lead to variable landscape fragmentation patterns, suggesting patterns of spatial interaction among landowners indirectly affect landscape-scale patterns of urbanization and the fragmentation of undeveloped forest and farmland

    A review of methods to model route choice behavior of bicyclists: Inverse reinforcement learning in spatial context and recursive logit

    No full text
    Used for route choice modeling by the transportation research community, recursive logit is a form of inverse reinforcement learning, the field of learning an agent's objective by observing it's behavior. By solving a large-scale system of linear equations it allows estimation of an optimal (negative) reward function in a computationally efficient way that performs for large networks and a large number of observations. In this paper we review examples of IRL models applied to real world travel trajectories and look at some of the challenges with recursive logit for modeling bicycle route choice in the city center area of Amsterdam
    corecore