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Abstract
Adaptive Mesh Refinement (AMR) is a computational technique used to reduce the amount of
computation and memory required in scientific simulations. Geosimulations are scientific simula-
tions using geographic data, routinely used to predict outcomes of urbanization in urban studies.
However, the lack of support for AMR techniques with geosimulations limits exploring predic-
tion outcomes at multiple resolutions. In this paper, we propose an adaptive mesh refinement
framework FUTURES-AMR, based on static user-defined policies to enable multi-resolution geo-
simulations. We develop a prototype for the cellular automaton based urban growth simulation
FUTURES by exploiting static and dynamic mesh refinement techniques in conjunction with
the Patch Growing Algorithm (PGA). While, the static refinement technique supports a stat-
ically defined fixed resolution mesh simulation at a location, the dynamic refinement technique
supports dynamically refining the resolution based on simulation outcomes at runtime. Further,
we develop two approaches - asynchronous AMR and synchronous AMR, suitable for parallel
execution in a distributed computing environment with varying support for solution integration
of the multi-resolution results. Finally, using the FUTURES-AMR framework with different
policies in an urban study, we demonstrate reduced execution time, and low memory overhead
for a multi-resolution simulation.

2012 ACM Subject Classification Computing methodologies → Distributed simulation, Com-
puting methodologies → Multiscale systems, Applied computing → Environmental sciences

Keywords and phrases Adaptive mesh refinement, Geosimulation, Distributed system, Multi-
resolution, Urban geography

Digital Object Identifier 10.4230/LIPIcs.GIScience.2018.16

1 Introduction

Over the past decade, advancements in remote sensing technologies and classification tech-
niques have increased the availability of high-resolution datasets relevant to urban simulation.
High resolution LiDAR derived DEMs, land cover classifications, and the increasing amount
of vector-based spatial layers promise to deliver a better understanding of urbanization for
forecasting urban development. However, in practice, computational constraints impact

© Ashwin Shashidharan, Ranga Raju Vatsavai, Derek B. Van Berkel, and Ross K. Meentemeyer;
licensed under Creative Commons License CC-BY

10th International Conference on Geographic Information Science (GIScience 2018).
Editors: Stephan Winter, Amy Griffin, and Monika Sester; Article No. 16; pp. 16:1–16:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ashdharan@ncsu.edu
mailto:rrvatsav@ncsu.edu
mailto:dbvanber@ncsu.edu
mailto:rkmeente@ncsu.edu
http://dx.doi.org/10.4230/LIPIcs.GIScience.2018.16
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


16:2 FUTURES-AMR: Adaptive Mesh Refinement framework for Geosimulations

the resolution of input data, or the extent of the study region used in an urban simulation.
Particularly, memory and I/O constraints limit studies leveraging high-resolution data to
small study extents, while study of large extents are often only possible with low-resolution
data. Although an urban simulation may require high-resolution data only in a small region
of the study (as shown in Fig. 1b), current urban simulation frameworks do not support
selectively varying the resolution of a simulation for different regions (as shown in Fig. 1c
and Fig. 1d) at runtime. Further, if new urbanization is highly likely only on a small portion
of the study extent, modifying the urban growth simulation to use high-resolution data over
the complete study extent is highly inefficient.

Adaptive mesh refinement (AMR) is a technique that can support multi-resolution
simulations using high-resolution data in regions where it is necessary. For urban growth
simulations in large study extents, adaptive mesh refinement at runtime would allow focusing
computational resources for simulating emerging urban patterns in regions of interest (ROIs).
An AMR approach using high-resolution data would account for more prominent local effects
like topographic features and land cover classes to simulate accurate urbanization patterns.
Additionally, using low-resolution data for simulation in regions of less importance would
reduce memory overhead and enable faster simulation. In effect, such an approach would
eliminate the computational overhead of a high-resolution simulation over the global extent
of a study region, while generating fine spatial patterns where necessary.

Although an AMR approach promises significant computational savings, AMR techniques
developed thus far only support refinement and coarsening criteria for solving partial differ-
ential equations (PDEs) in a scientific simulation. In particular, these are not applicable to
geosimulations which use cellular automaton (CA) based models to generate urbanization
outcomes. Thus, the first challenge is the development of new refinement and coarsening
criteria to support AMR with geosimulations like urban growth. In particular, geosimula-
tions require a mesh placement strategy that specifies the location, extent and spacing of a
mesh (resolution), and a mesh generation strategy for use with different datatypes in the
simulation. In turn, the choice of a mesh generation strategy impacts the integration strategy
for synchronizing the results generated at different resolutions.

In this paper, we address this research gap and develop a distributed AMR framework,
FUTURES-AMR that supports multi-resolution geosimulations. Specifically, the framework
supports refinement and coarsening requests using multi-resolution data in regions of interest
(ROIs) for two scenarios: (i) static refinement in ROIs specified by an end user; (ii) dynamic
refinement based on a combination of static policies and the simulation outcomes at runtime.
For both scenarios, we allow end users to specify static policies that define refinement and
coarsening criteria for the AMR simulation. Finally, we develop two approaches - asynchronous
AMR and synchronous AMR with different load balancing and solution integration strategies
in a master-worker style distributed system architecture.

The rest of the paper is organized as follows: in Sect. 2, we summarize existing research
for AMR simulation. In Sect. 3, we provide an overview of Adaptive Mesh Refinement as used
in numerical analysis. In Sect. 4, we describe our distributed system architecture for AMR
in the asynchronous and synchronous AMR approaches, and how we adapt the FUTURES
geosimulation in our AMR framework. In Sect. 5, we describe our experimental setup and
present results from executing FUTURES-AMR in two different geographic regions with
user-defined policies. Finally, we conclude in Sect. 6, with future work in Sect. 7.
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 Source: Esri, DigitalGlobe, GeoEye, Earthstar
Geographics, CNES/Airbus DS, USDA, USGS,
AeroGRID, IGN, and the GIS User Community

(c) Coarsening

(d) Refinement

Resolution: 30m
Extent (W x H): 12 x12
# pixels: 144 Resolution: 90m

Extent (W x H): 2 x 2
# pixels: 4 

Resolution: 10m
Extent (W x H): 6 x 6
# pixels: 36 

(a) Satellite Image (b) Classified Image

Trees Grass Urban

Figure 1 Illustration of the proposed FUTURES-AMR framework – The study extent shown in
the classified image has 60% non-urban pixels. Refinement using 10m resolution data, and coarsening
using 90m resolution data are requested on 5% and 40% of the total non-urban pixels in the study
area, respectively. The default simulation at 30m resolution executes on the remaining 55% of
non-urban pixels.

2 Related Work

Adaptive mesh refinement (AMR) is a technique that can be used with both structured and
unstructured meshes. AMR techniques support dynamically adjusting the cell spacing on
a mesh to achieve an accurate numerical solution. Structured adaptive mesh refinement
(SAMR) was first proposed by Berger et al. [4] to solve partial differential equations (PDE)
in shock hydrodynamics. This technique which relies on partitioning the problem space into
different regions with varying spatial resolutions is achieved by imposing varying resolution
grids in space. Further, each region is assumed to be rectangular in shape with a grid
hierarchy to represent the relationships between different regions. As the solution progresses,
nested grids or new grids are generated refining the problem in these regions. In case of
time-dependent equations, these refinements can be applied to compute solutions at finer
temporal resolutions as well.

Initially developed to solve simulations using hyperbolic conservation laws [4, 3], AMR
approaches have since been extended to solve parabolic and elliptic equations. These numerical
solvers find widespread use across various domains such as Computational Fluid Dynamics [4,
3], Astrophysics [9] and Climate Modeling [18]. General-purpose AMR frameworks have also
been developed that support developing applications not specifically designed for a domain.
BoxLib [2], Chombo [6] and SAMRAI [24] are examples of such frameworks with numerical
solvers and APIs for developing codes for new applications. A comprehensive listing of the
different frameworks for AMR refinement and their applications can be found in a survey by
Dubey et al. [8].

AMR frameworks typically define a grid hierarchy management scheme to handle the
coarse and fine regions. Block representation schemes have been devised which represent
regions as grids using lower and upper coordinates of a bounding box [4, 2, 6, 24]. Similarly,
tree representations exist that define coarse and fine regions in terms of parent-child relations
and their splitting criteria [10, 20, 12]. These representations have implications on the
number of cells to refine, the data distribution strategy for parallel computation, memory
requirements and storage overhead. Exclusive computational geometry libraries also exist
which support creation of structured and unstructured meshes for scientific simulations.
CGAL [15], Silo [19], PARAMESH [12] are examples of libraries with geometry algorithms
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and mesh generation and management routines for use in scientific applications. However,
these libraries lack support for numerical solvers and AMR refinement operations. PETSc [1]
and Hypre [14] are libraries with parallel numerical solvers. Even so, combining individual
libraries to port existing serial code and develop a parallel AMR application requires parallel
programming expertise and significant rework.

Owing to the numerical complexity of solving partial differential equations (PDEs),
most AMR related research has focused on developing data structures and algorithms to
support parallel and distributed computation [7]. These frameworks are designed with
one of the two popular load balancing strategies for AMR: patch-based and domain-based
(or tree-based). In the patch-based approach [4, 23], load balancing distributes regions
for refinement over a set of processors using a binning, greedy or round-robin technique.
Although, a patch-based approach offers a simple load balancing strategy to balance overall
computational work at a processor, data movement for synchronizing results across refinement
levels is unavoidable and could lead to significant communication overhead. On the other
hand, domain-based approaches attempt to optimize communication overhead by assigning
coarsening or refinement operations for a sub-region to a processor where its parent region
resides [10, 20, 12]. However, domain-based approaches suffer from scalability issues at higher
levels of refinement as dynamic reconfiguration of the workload necessitates data migration
to maintain the load and avoid synchronization between nested levels at each processor. A
comprehensive comparison of the parallelization techniques for dynamic load balancing can
be found in a survey by Rantakokko et al. [21]. The results of the survey indicate that no
single partitioning scheme performs best across all types of applications and systems. Finally,
AMR frameworks typically also define techniques to integrate results at the boundary of
coarse-fine interfaces. Refluxing and circulation integration techniques, which combine results
from interpolation of low resolution data at coarser levels and aggregation of data at finer
levels are used to update PDE solutions at the boundaries.

General-purpose parallel AMR frameworks attempt to reduce the programming effort to
develop parallel structured AMR applications. While most of these frameworks are distributed
memory implementations [9, 6, 24], AMRCLAW [5] is a shared memory implementation.
Parallel AMR frameworks facilitate development of parallel AMR applications by handling
data organization and distribution, load balancing and data communication as part of the
framework [17]. Along with numerical solvers for PDEs, these frameworks abstract the
implementation details such as the data type, parallel communication patterns and data
placement strategies from the user. AMR frameworks [16, 11] also exist that compute
solutions in irregularly shaped regions of the sub-domain without assuming a logically
rectangular structure. However, similar to structured AMR frameworks these are only
suitable for scientific applications using partial differential equations. Finally, we are not
aware of AMR frameworks developed to support geosimulations.

3 Adaptive Mesh Refinement

To compute a numerical solution for PDEs, an adaptive mesh refinement technique starts
by imposing a coarse grid (or mesh) over the complete problem domain. The grid defines
the cell spacing, or resolution for computation in the domain. Imposing a finer grid in the
domain introduces more grid points while, a coarse grid presents fewer points at which,
solutions for the equation must be calculated. Thus, the computational complexity to solve
a PDE depends on the grid spacing of the domain. An adaptive mesh refinement technique
superimposes fine grids only in certain sub-domains (or regions) of the problem (also known
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as regridding). These are identified by estimating the accuracy or error of the computed
solution. Finer grids are recursively imposed in the region till the error or accuracy of the
computed solution is acceptable (i.e., below or above a threshold), or a maximum level of
refinement is reached. Specifying a maximum level of refinement avoids infinite recursion
in the regridding step. Thus, in an AMR based solution, a coarse grid is applied on the
complete problem domain, but recursively refined in regions till a suitably accurate solution
is obtained.

In regions superimposed with finer grids, AMR uses interpolation to resolve the initial
values at the fine grid points from the coarse grid points. Subsequently, the solutions of
the equations at the finer grids points are computed, and results at the fine grid points are
aggregated to update the solution at the coarse grid points. Along the fine-coarse grain
region boundaries, the AMR integration approach uses a flux conservation or circular integral
control technique to update values at the coarse grid points. Thus, a solution at the initial
coarse resolution (or default resolution) for the complete domain is obtained using AMR.

4 FUTURES-AMR

In our framework, we modify the Berger-Oliger-Collela approach [4] to support adaptive
mesh refinement for a geosimulation. We make two major modifications in the four step
Berger-Oliger-Collela approach. Firstly, we substitute the problem of solving PDEs at
different intervals in a domain with an urban growth simulation using a Patch Growing
Algorithm (PGA) [13] in a geographic region. Secondly, we modify the error-based AMR
refinement criteria for PDE solvers with AMR refinement criteria based on user-defined
policies for a region. Thus, in our FUTURES-AMR framework, the FUTURES urban
simulation executes the PGA at different resolutions based on refinement criteria expressed
in user-defined policies.

We also make a few assumptions about supported geosimulations in this framework.
First, a geosimulation executing in this framework is assumed to be a cellular automaton
consisting of a grid of cells with transition rules such as defined by a PGA. Second, each cell
has a fixed spatial resolution representing a fixed area on the landscape. A geosimulation
begins at this fixed resolution over the complete landscape. Third, the transition rules
of the CA-based geosimulation for patch growth must be specified, or generalizable for
use at different resolutions. Based on these assumptions and modifications, we define the
FUTURES-AMR algorithm as follows:

I Step 1. Start a geosimulation with a coarse default resolution over the complete study
extent.

I Step 2. Evaluate static policies as part of PGA to identify regions that need higher/lower
resolution data.

I Step 3. Superimpose finer grids for refinement or coarser grids for coarsening in these
regions. Subsequently, execute PGA till either the PGA halting criteria is met or higher
resolution data is unavailable.

I Step 4. Integrate multi-resolution simulation outcomes from refinement and coarsening in
different regions with the default resolution result in the global extent.

We design two simulation approaches namely, asynchronous AMR and synchronous AMR
that vary in their implementation of Step 4. We describe these approaches and their varying
support for policies in Section 4.3 and 4.4. We begin with a brief description of the PGA for
the proposed framework.
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4.1 Patch Growing Algorithm (PGA)
In the simulation of an urban landscape, new urban patches are developed by executing a
Patch Growing Algorithm at suitable development sites in the landscape. One standard
method [13] is to determine a suitable seed and execute a neighbor discovery process to
determine new cells for urban patch growth. The PGA generates new patches that characterize
the spatial changes due to urbanization in terms of patch shape and patch size starting at
the seed location. However, the algorithm depends on a fine grid to capture these patterns
at a fine granularity. In general, wider spacing of grid points results in lower data resolution
representing the landscape and hence, higher inaccuracy in patterns of the generated patches.
These solutions may be acceptable in certain regions of a landscape, e.g. in a sparsely
populated remote rural region, but not in a dense urban region like a central business district
(CBD). Thus, to support varying mesh spacing depending on the requirement in a region, we
modify the PGA to generate refinement and coarsening requests at runtime.

4.1.1 Refinement/Coarsening
In FUTURES-AMR, a refinement or coarsening request is generated in response to user-
defined policies in a region. These policies (see Section 4.2) define a refinement or coarsening
criteria in a region for use during the simulation. A refinement criterion imposes a finer grid
in a buffer region surrounding the seed site. In turn, the simulation executes the PGA using
high-resolution data (resolution higher than the default resolution) in this region. Besides
fine grids, coarse grids may also be specified for patch growth using PGA. In case of coarse
grids, the simulation uses low-resolution data (resolution lower than the default resolution)
in this region for the PGA. In case of both, fine and coarse grids, further refinement may be
triggered to meet the PGA halting criteria until a higher resolution of data is unavailable.
Thus, the simulation proceeds in discrete time-steps executing the PGA at default resolution,
or by refining, or coarsening select regions in the geographic extent. The simulation result
at the end of each time-step is a collection of coarsening results, refinement results and the
simulation result at the default resolution. We formally define a refinement and coarsening
request as follows:

X(L, E, r)← P1 ∧ P2 ∧ . . . ∧ Pn (1)

where X is either a refinement or coarsening request, L is the geolocation of the request, E

is the extent to refine or coarsen from L, r is the resolution to use with the request, and
P1 . . . Pn are user-defined policies in the extent E.

4.2 Policy Specification
In our AMR framework, we support user-defined static policies specified as input to the
simulation. These policies serve as refinement and coarsening criteria for a simulation to
perform static or dynamic refinement. If a geosimulation is unable to satisfy urbanization
conditions using low-resolution data, refinement is triggered. Similarly, satisfying development
conditions by coarsening with low-resolution is also supported. We formally define a policy
as follows:

P ← A1 ∧A2 ∧ . . . ∧An (2)

where, Ai is a spatial or non-spatial attribute, and P is a user-defined policy expressed as a
conjunction of such attributes.
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4.2.1 Static Refinement
Static refinement is a technique used to a priori superimpose meshes in regions of interest.
In these regions, the mesh resolution is adjusted once, which is then maintained throughout
the simulation. In case of geosimulations, as described in Section 4.1, coarsening may also be
acceptable in certain regions of the landscape. Thus, in the FUTURES-AMR framework
static policies specified a priori support both, refinement and coarsening criteria in a region.
Static policies specify such regions where simulations with a different resolution must be
carried out. For example:
P1: A spatial refinement policy specifies a polygon feature and resolution of data (1m/10m)

to simulate patterns of urban development.
P2: A spatial coarsening policy specifies a polygon feature and resolution of data (90m/270m)

to simulate patterns of urban development.

4.2.2 Dynamic Refinement
Dynamic refinement is carried out in response to conditions arising during a simulation. In
case of dynamic refinement, fine meshes are superimposed in regions based on a combination
of simulation outcomes and a refinement criteria satisfied at runtime. The same is applicable
to coarsening as well. In the FUTURES-AMR framework, refinement criteria for patch
growth is defined using static policies. For example:
P1: A patch growth refinement policy specifies high-resolution data (1m/10m) to develop

urban patches smaller than a given size within a distance from a central business district.
P2: A patch growth coarsening policy specifies low-resolution data (90m/270m) to develop

urban patches greater than a given size beyond a distance from a central business district.
P3: A data-driven policy specifies the resolution of data (1m/10m/90m/270m) to develop

urban patches based on site development potential determined at runtime.

In the simulation, during PGA execution, these policies are evaluated at runtime to
determine if dynamic refinement is necessary. A data-driven policy (e.g., P3) serves to resolve
potential conflicts in case of multiple user-defined policies. If dynamic refinement is triggered,
PGA iteratively refines the mesh to simulate urbanization till the refinement criteria is met.
Thus, in dynamic refinement, the PGA adaptively adheres to the structure of the patch
being developed at higher resolutions.

4.3 Asynchronous AMR
The asynchronous approach in our AMR framework is designed to support experimentation
of policies at different resolutions in a study area. To be able to compare outcomes due
to a user-defined policy, the approach executes the simulation, both in the presence and
absence of policies, and generates results at different resolutions. In particular, the approach
executes the PGA at multiple resolutions only in regions with user-defined policies, avoiding
the execution overhead of a multi-resolution simulation over the complete study extent.
Further, the emerging spatial structures in a time-step at different resolutions are retained
as-is, eliminating additional I/O required to aggregate the results generated at different
resolutions.

4.3.1 Solution Integration
In the asynchronous AMR approach, the results from adaptive mesh refinement are not
integrated with the solution computed at the default resolution. Such an approach preserves
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and refinement requests at each time-step of the simulation. The master receives and aggregates
these requests from the workers at every time-step for processing in Phase 2.
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Figure 3 Asynchronous AMR (Phase 2) – The workers execute the refinement and coarsening
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the patch specificity obtained from multi-resolution simulations of different regions. GIS
overlay techniques can be used to visualize the result layers from refinement and coarsening
in different regions along with the global output raster.

4.3.2 Load Balancing
In the asynchronous approach, refinement and coarsening requests are processed independent
of the simulation at the default resolution. Refinement and coarsening requests triggered
by the simulation execute asynchronously without blocking the simulation. The approach
ensures maximum resource utilization throughout the simulation.

We implement a master-worker approach for distributed asynchronous AMR simulations.
In Phase 1 of this approach (Fig. 2), we begin by assigning each worker a geographic partition
for simulation. Each worker executes a simulation on its partition generating new refinement
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and coarsening requests. At the end of every time-step, the worker relays these requests to
the master. Finally, once a worker completes all time-steps of the simulation on its assigned
partition, the master schedules a new partition at the worker, if any.

Phase 2 (Fig. 3) begins when all partitions in the study have been processed. In Phase
2, the master schedules the refinement and coarsening requests received from the workers
during Phase 1. Similar to Phase 1, each worker receives a refinement or coarsening request
till all requests at the master have been processed. Finally, if further refinement becomes
necessary while processing a request at a worker, it is executed at the same worker.

4.4 Synchronous AMR
The synchronous AMR approach propagates the effects of static policies in each time-step of
the geosimulation to the subsequent time-step of the simulation. In this approach, spatial
structures that emerge due to a policy at a particular time-step are input to the next
time-step, i.e., the spatial effects of policies are temporally preserved as well. Specifically,
the simulation outcomes from refinement and coarsening requests at different resolutions
are integrated with the global solution for the region at every time-step. Thus, using the
synchronous AMR approach, a user can explore long-term effects of static policies in a region.

4.4.1 Solution Integration
We devise a simple integration approach to merge solutions at the default resolution of the
simulation for the global extent. In regions where coarsening occurs, we interpolate the
low-resolution simulation result to the default resolution, and perform map algebra addition
to combine it with the global output raster. Similarly, for refinement, we first aggregate the
simulation result and perform map algebra addition on the global output raster. Thus, the
refinement and coarsening results at different resolutions, in different regions, are integrated
in every time-step at the default resolution of the global solution.

Effect of datatype on integration: In case of urbanization outcomes represented by a
boolean datatype, we use average, mode or near resampling techniques to merge multi-
resolution results at the default resolution (Fig. 9). In case of development pressure represen-
ted by a real datatype (e.g., in FUTURES [13]) we adopt one of the two approaches:
(i) recalculate the development pressure over the complete study area after integrating the

simulated urbanization results over the global extent or,
(ii) use the result from the highest data resolution simulation in regions with multiple

solutions.

4.4.2 Load Balancing
Once again, in the synchronous approach, the master begins by assigning different partitions
for simulation at the workers. In every time-step, the workers build and maintain a list of
coarsening and refinement requests. Subsequently, these requests are processed at the worker,
i.e., a refinement or coarsening request is scheduled for execution at the same worker after
the completion of a time-step. Any further refinement required is also carried out at the same
worker. Additionally, as part of synchronization, integration of results (see Section 4.4.1) is
carried out before the next time-step. Once the solution integration is complete, the worker
resumes the simulation on its assigned partition at default resolution for the next time-step.
This process is repeated in every time-step for all partitions the study area. Thus, in the
synchronous AMR approach, all spatial and temporal interactions are preserved.

GISc ience 2018
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5 Experimental Evaluation

In this section, we describe the experimental setup of our proposed AMR framework. Figure 5
shows the two sub-county zones in the Raleigh-Durham (RDU) region used in our experiments.
We carry out our experiments on a system with a hardware spec of 2.5 GHz Intel Core
i7 processor and 16 GB memory, and software support for GDAL 2.0 and OpenMPI 1.10.
Further, we setup our experiments to use three cores for MPI execution.

Experiment 1: Simulation overhead at different resolutions

In our first experiment, we measure the memory requirement and execution time for a
simulation using a fixed input resolution. We setup the study area shown in Fig. 5 to execute
20 time-steps of the simulation in our experiment. We perform three simulation runs, varying
the input resolution in each run to use 10m, 30m and 90m input resolution, respectively.
Table 1 presents the simulation overhead and Figure 6 illustrates the output maps generated
using different input resolution.
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Table 1 Simulation Execution Time and Memory Requirement at different input resolutions.

Execution Time (in seconds) Memory Requirement (MB)
10m 30m 90m 10m 30m 90m

91.7944 9.2878 1.1584 997 118 12

 Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics,
CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User

(a) Satellite Image. (b) 10m. (c) 30m. (d) 90m.

Figure 6 Durham subdivision - Ridges of Parkwood. Fig. 6a is a satellite image from 2017.
Fig. 6b, 6c, 6d illustrate urbanization in the year 2030 at 10m, 30m, 90m resolution data, respectively.

Table 2 Simulation Execution Time and Memory Requirement with varying ROI extents.

Extent of ROI Execution Time (in seconds) Memory Requirement (MB)
(in 30m pixels) 10m 90m 10m 90m

30 x 30 0.12 0.12 16 15
60 x 60 0.17 0.16 25 21

200 x 200 0.53 0.41 63 39
300 x 300 0.84 0.63 96 48
400 x 400 1.78 1.14 128 55
500 x 500 3.13 1.67 193 61
600 x 600 4.3 2.42 248 64

We observe that both, the execution time and memory requirement increase with use of
high-resolution data. Specifically, there is a 9-10x increase in both, the memory requirement
and execution time, when the spatial resolution of the simulation is increased by a factor
of 3. We use this as a baseline for comparison of the computational improvements in the
synchronous and asynchronous approaches in our FUTURES-AMR framework.

Experiment 2: Static Refinement using static policies

In the FUTURES-AMR framework, static refinement supports superimposing finer or coarser
meshes in particular regions of interest (ROIs). A static policy for refinement or coarsening
defines the exact location and extent of these ROIs for high-resolution or low-resolution
simulation. In our second experiment, we measure the overhead to execute refinement (10m)
and coarsening (90m) requests with varying ROI extents to test how varying policies would
impact computational efficiencies.

We observe that as the size of the ROI increases, execution time and memory requirement
for executing a refinement and coarsening request increases. However, the refinement overhead
is significantly lesser when compared to using high-resolution 10m data for the simulation over
the complete study extent (shown in Table 1). Specifically, in the worst case, a refinement
request by a default 30m resolution simulation, increases the the total execution time by
4.3 seconds and peak memory requirement of the simulation by 248MB. Thus, by using the
FUTURES-AMR framework for processing refinement and coarsening requests, we incur
significantly low computational costs for a multi-resolution simulation.
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Figure 7 The figure illustrates three policies with varying buffer zones based on two central
business districts (Hillsborough in Zone 1 and Durham in Zone 2). In the inner zone, urban
development using PGA triggers refinement requests (10m resolution) for patches with patchSize
> 15 (patchSize is the total number of 30m pixels to simulate in an urban patch). In the outer
zone, urban development using PGA triggers coarsening requests (90m resolution) for patches with
patchSize > 30. In the middle zone, urban development using PGA always uses 30m resolution data.

Table 3 Asynchronous AMR - Simulation Execution Time and Number of Requests.

Policy
Resolution Number of Requests

Time
10m 30m Zone 1 Zone 2

Refinement Coarsening Refinement Coarsening (in s)
d2city < 150 > 350 83 50 6 31 53.57

patchSize > 15 > 30
d2city < 250 > 400 549 13 26 24 133.68

patchSize > 15 > 30
d2city < 350 > 450 683 0 60 16 153.39

patchSize > 15 > 30

Experiment 3: Dynamic Refinement using static policies

In our third experiment, we use static policies as illustrated in Figure 7 for dynamic refinement.
We run three experiments, where each experiment uses a different policy to simulate urban
growth. We begin the simulation using coarse 30m resolution data, switching to high or
low-resolution data for patch growth as determined by policy evaluation at runtime. The
policies in our experiment specify two attributes for variable resolution simulation:
(i) distance of the patch from a central business district (d2city);
(ii) the size of the patch (patchSize).

The attributes are used to define threshold values for coarsening and refinement criteria. In
dynamic refinement, the parameter values generated during the simulation are compared
against these threshold values to trigger coarsening or refinement. Further, unlike static
refinement, additional refinement is triggered if PGA halting criteria is not met. Table 3
and 4 present the measured execution times in the asynchronous and synchronous AMR
approaches in our framework with the three policies. Both, d2city and patchSize in Tables 3
and 4 are expressed in terms of number of 30m pixels.

The results indicate that the execution time varies based on the number of requests,
which are different between the approaches. Moreover, the execution time for processing
different policies vary based on the number of requests. In particular, we observe that total
execution time increases with increasing number of requests. Thus, user-defined policies must
be carefully selected to limit the adverse impact on the total execution time. Nevertheless,
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Table 4 Synchronous AMR - Simulation Execution Time and Number of Requests.

Policy
Resolution Number of Requests

Time
10m 30m Zone 1 Zone 2

Refinement Coarsening Refinement Coarsening (in s)
d2city < 150 > 350 84 51 7 35 85.37

patchSize > 15 > 30
d2city < 250 > 400 639 13 33 26 297.53

patchSize > 15 > 30
d2city < 350 > 450 784 0 63 20 347.35

patchSize > 15 > 30

(a) 90m. (b) 30m. (c) 10m. (d) 30m.

Figure 8 Asynchronous AMR - Fig. 8a illustrates an output map of a coarsening request at 90m
resolution. Fig. 8b illustrates the output map for the region in Fig. 8a at the default 30m resolution.
Fig. 8c illustrates an output map of a refinement request at 10m resolution. Fig. 8d illustrates the
output map for the region in Fig. 8c at the default 30m resolution.

(a) 30m. (b) 10m. (c) 30m.

Figure 9 Synchronous AMR - Fig. 9a illustrates an output map at the default 30m resolution.
Fig. 9b illustrates the output map for the region in Fig. 9a for a refinement request at a 10m
resolution. Fig. 9c illustrates the composite output map generated by the simulation at the default
30m resolution by combining Fig. 9b and Fig. 9a in the synchronous approach.

the FUTURES-AMR multi-resolution framework demonstrates memory scalability, incurring
a maximum additional memory overhead of 248MB as seen in Experiment 2. We also observe
that total execution time in the synchronous AMR approach is higher than the asynchronous
AMR approach. This increase in execution time is a result of the solution integration
approach in the synchronous mode, where results from the multi-resolution simulations at
different locations are merged into the final output raster of the study in every time-step. As
the asynchronous AMR approach does not merge output results, it performs faster. Finally,
in Fig. 8 and Fig. 9, using a few select regions from our study area, we illustrate the effects
of user-defined policies on the simulation results generated in the two approaches.
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6 Conclusion

FUTURES-AMR has been developed as a computing framework to support multi-resolution
geosimulations for use in urban planning and development. In this paper, we described a gen-
eric framework for executing a distributed multi-resolution geosimulation and demonstrated
its use with the FUTURES geosimulation. We developed static refinement and dynamic
refinement techniques with support for expert defined and data-driven polices, along with
two new approaches - synchronous and asynchronous AMR for distributed execution of a
geosimulation. The results from evaluating the impact of three different user-defined policies
on the quality and computational requirements demonstrate the framework’s ability to
execute a multi-resolution geosimulation with minimal execution time and memory overhead.
Thus, in conclusion, the FUTURES-AMR framework, with its support for selective refinement
in ROIs is suitable for urban studies using high-resolution data in large study extents.

7 Future Work

Urban development policies are designed in response to urbanization outcomes witnessed in
previous years. They have a definitive timeframe associated with them, and often, success or
failure of a policy leads to new or modified policies. However, currently, the FUTURES-AMR
framework only supports static policies specified a priori. To support dynamic policies
in different regions over time, our AMR framework can be integrated with computational
steering features that support modification of simulation input at runtime. In future work,
we propose to modify our computational steering framework, tFUTURES [22] to allow users
to provide dynamic policies as steering input to the simulation.
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