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A B S T R A C T

Population growth and unrestricted development policies are driving low-density urbanization and fragmen-
tation of peri-urban landscapes across North America. While private individuals own most undeveloped land,
little is known about how their decision-making processes shape landscape-scale patterns of urbanization over
time. We introduce a hybrid agent-based modeling (ABM) – cellular automata (CA) modeling approach, de-
veloped for analyzing dynamic feedbacks between landowners’ decisions to sell their land for development, and
resulting patterns of landscape fragmentation. Our modeling approach builds on existing conceptual frameworks
in land systems modeling by integrating an ABM into an established grid-based land-change model – FUTURES.
The decision-making process within the ABM involves landowner agents whose decision to sell their land to
developers is a function of heterogeneous preferences and peer-influences (i.e., spatial neighborhood relation-
ships). Simulating landowners’ decision to sell allows an operational link between the ABM and the CA module.
To test our hybrid ABM-CA approach, we used empirical data for a rapidly growing region in North Carolina for
parameterization. We conducted a sensitivity analysis focusing on the two most relevant parameters—spatial
actor distribution and peer-influence intensity—and evaluated the dynamic behavior of the model simulations.
The simulation results indicate different peer-influence intensities lead to variable landscape fragmentation
patterns, suggesting patterns of spatial interaction among landowners indirectly affect landscape-scale patterns
of urbanization and the fragmentation of undeveloped forest and farmland.

1. Introduction

In many metropolitan regions, population growth and the demand
for new development are transforming the form and function of land-
scapes. With a projected increase of global urban population from 2.6
billion in 2000 to 5 billion in 2030, this trend is likely to continue
(United Nations & Department of Economic and Social Affairs
(Population Division), 2015). Land-change models are valuable tools to
simulate and explore spatiotemporal urbanization patterns and the ef-
fects of urbanization on landscapes surrounding urban centers

(National Research Council, 2014; Rounsevell et al., 2012; Verburg,
Kok, Pontius, & Veldkamp, 2006). Due to their ability to represent
environmental heterogeneity, land-change models, particularly those
based on cellular automata (CA), are frequently used for projecting
urban growth (Herold, Goldstein, & Clarke, 2003; Koch, Wimmer, &
Schaldach, 2018; White & Engelen, 1993). CA models simulate new
development in locations of high suitability, based on a weighted
overlay of locally important site suitability factors (Verburg et al.,
2006). Areas identified as highly suitable for new development through
CA are derived from empirical analyses of observed growth patterns.
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For example, the most suitable locations may be found adjacent to
existing amenities such as roads and urban centers (Barredo, Kasanko,
McCormick, & Lavalle, 2003; Koch, 2010; Meentemeyer et al., 2013).
However, development does not always occur where expected due to
stochastic processes and path dependencies (Brown, Page, Riolo,
Zellner, & Rand, 2007).

Variability in development location is induced by human decision-
making, where heterogeneities in personal preferences and priorities
lead to differences in the locations of land-use activities (Janssen &
Ostrom, 2006; Meyfroidt, 2013; Smith et al., 2017). Furthermore, the
decision-making processes of landowners along the urban fringe, in-
cluding those decisions resulting in urban sprawl, are notoriously dif-
ficult to unravel and represent within land-change models (Brown et al.,
2008; Filatova, Parker, & Van Der Veen, 2009). Agent-based models
(ABM) offer a way to incorporate human decisions in land-change
models and improve representations of variability in land-change pro-
cesses (Huang, Parker, Filatova, & Sun, 2014). Additionally, ABMs are
ideal for modeling complex systems and patterns that emerge as a result
of interactions between humans and their environments (An, 2012;
Parker, Manson, Janssen, Hoffmann, & Deadman, 2003). To date, ABMs
of land-change processes have primarily focused on studying urban
settings using microeconomic assumptions of utility maximization
(Groeneveld et al., 2017). The majority of these studies consider
housing markets and residential choice from a buyer or developer’s
perspective (e.g., individual preferences for finding a location to build),
often considering land prices as an important component of decision
making (e.g., Filatova et al., 2009; Ligmann-Zielinska, 2009; Magliocca,
Safirova, McConnell, & Walls, 2011). These models have demonstrated
the influence of heterogeneous agents on model outcomes (Filatova,
Voinov, & van der Veen, 2011; Magliocca, McConnell, Walls, &
Safirova, 2012b), including effects on urban sprawl (Brown & Robinson,
2006; Magliocca, McConnell, & Walls, 2015).

In many growing regions of the U.S., development in the peri-urban
area is driven by the desire for low-density housing and therefore takes
on a distinct leapfrog pattern, where new development is discontinuous
from existing urban areas (Irwin, Jayaprakash, & Munroe, 2009). Sev-
eral causes leading to the process of leapfrogging have been explored,
such as landowners who do not wish to sell undeveloped properties
(Barnard & Butcher, 1989; BenDor, Shoemaker, Thill, Dorning, &
Meentemeyer, 2014; Pyle, 1989). Individual decisions regarding land
ownership and management may not only be driven by economic uti-
lity, but also nonmonetary values (Kauneckis & York, 2009;
Mullendore, Ulrich-Schad, & Prokopy, 2015). For example, social fac-
tors like age, income, educational attainment, legacies, and lifestyles
further influence landowners’ willingness to sell their properties to
developers (Jager, Janssen, De Vries, De Greef, & Vlek, 2000; Levine,
Chan, & Satterfield, 2015; Robinson et al., 2007). Hence, understanding
of land change processes could be improved by including high-quality
data related to land-change agents, including various preferences, be-
liefs, and behaviors (National Research Council, 2014).

Landowners’ preferences, beliefs, and behaviors are highly influ-
enced by the preferences, beliefs, and behaviors of their peers (Huff,
Leahy, Hiebeler, Weiskittel, & Noblet, 2015). Social norms, social in-
teractions, knowledge transfer, and anticipating as well as learning
strategies all influence individuals’ decisions and affect how they
manage their land (Chen, Vina, Shortridge, An, & Liu, 2014; Little &
McDonald, 2007; Schlüter et al., 2017). Though peer-influence is not
necessarily defined by geographic space, immediate neighbors can have
a particularly strong effect on decisions when it comes to land man-
agement (Manson, Jordan, Nelson, & Brummel, 2016; Nassauer, Wang,
& Dayrell, 2009). For example, a landowner may decide to sell their
land after learning that a neighbor is selling their land, or lobby
neighbors not to sell to conserve neighborhood character. Agent-based
modeling approaches have been developed to study landowners’ deci-
sion making processes; Huff et al. (2015) implemented a simulation
model that includes neighborhood interactions as part of land-

management decisions and Magliocca et al. (2011) developed a model
to test the importance of economic values and amenities on develop-
ment. While this previous research has advanced our understanding of
the role social networks and economic values play in spatial develop-
ment patterns, there is a need for modeling frameworks capable of
exploring social values (in addition to economic) and their interplay
with other traditional drivers of development in peri-urban areas
(Groeneveld et al., 2017). Including peer-influence and heterogeneous
values in ABMs of landowners’ decisions can improve our under-
standing of the processes that generate urbanization patterns and aid
urban planners in preparing for future development.

The objective of this paper is to introduce a hybrid ABM-CA model,
designed for analyzing how the relationships between peer-influence
and heterogeneous values influence spatiotemporal patterns of devel-
opment in peri-urban areas. In the following, when using the term peer-
influence, we refer to the relationship between a focal agent and the
agents in its direct spatial neighborhood. To avoid being repetitive by
building “yet another model” (O’Sullivan et al., 2015), we build on
existing modeling frameworks and combine them in an ABM-CA model
called FUTURES-ABM. We use the established FUTURES model
(Meentemeyer et al., 2013) as the CA component. The FUTURES fra-
mework is unique in that it combines a field-based with an object-based
representation of land change, geared at providing a tool for analyzing
the spatial structure of development of peri-urban landscapes. It was
validated for the metropolitan region of Charlotte, North Carolina
(Meentemeyer et al., 2013), and has been successfully applied in a set of
case studies located in North Carolina (Dorning, Koch, Shoemaker, &
Meentemeyer, 2015; Petrasova et al., 2016; Pickard, van Berkel,
Petrasova, & Meentemeyer, 2017). This CA component enables the re-
presentation of environmental factors, their spatial heterogeneity, and
their effect on development patterns. We enhance the CA model with an
ABM component, based on conceptual frameworks in the ABM litera-
ture (Valbuena, Verburg, Bregt, & Ligtenberg, 2010). The ABM com-
ponent is customized to focus on social processes underlying land-
owners’ decisions that shape variability in patterns of development
(Delre, Jager, Bijmolt, & Janssen, 2010; Janssen, 2011).

The resulting hybrid FUTURES-ABM framework allows exploring
new questions related to how heterogeneous values and peer-influence
shape landscape-scale patterns of urbanization. We use a sensitivity
analysis, embedded in a simulation experiment, to demonstrate how the
inclusion of these social and environmental factors can influence the
simulation results. The sensitivity analysis focuses on the components
which we consider innovative contributions to the field of hybrid ABM-
CA models for the analysis of peri-urban areas. These components are
(1) a diverse actor typology including developer and landowner agents,
(2) a spatial neighborhood process affecting actors’ decision making,
and (3) an additional level of decision making—the parcel level.

2. Methods

2.1. Model description

We designed FUTURES-ABM for exploring the decision-making process
of heterogeneous landowners, and for analyzing how these decisions con-
tribute to emergent landscape patterns in peri-urban areas. By combining
the utility of a CA urban growth model with a process-based ABM, we can
simulate the complex spatial interactions between urban developers, land-
owners targeted for the purchase of land, and the environment. We also
incorporate agents’ peer (neighborhood) networks to evaluate how peer-
influences affect landscape-scale patterns of urbanization. First, we give an
overview of the FUTURES-ABM modeling framework. We provide further
documentation of the framework’s systematic details, based on the ODD
protocol (Grimm et al., 2010), in the Supplementary Material in Appendix
A. The ODD protocol also includes a description of input data used to
parameterize the model and to drive scenario simulations (see Section A3.2
Input Data).
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FUTURES-ABM consists of three sub-modules (POTENTIAL, DEMAND,
and the patch-growing algorithm (PGA); see Fig. 1), and includes two in-
teracting agent types: a developer collective agent and a heterogeneous set
of landowner agents. The landowner agent types can be characterized by
different levels of attachment to their land and profit-seeking motivations
(see Section 2.2.3). Landowner agents make the decision to sell or not to sell
undeveloped parcels of land. In the model, this decision-making process is
influenced by the individual landowner agent’s characteristics, personal
land ownership values or attachments, and the average site suitability
(POTENTIAL sub-module) of their parcel. The agent’s decision making can
also be influenced by the intentions of their neighbors to sell their prop-
erties.

Demand for urban development is prescribed based on projections
of historical population and urban growth (DEMAND sub-module).
When demand for urban development exists, the developer agent se-
lects a parcel of land for development based on site suitability, evalu-
ating environmental characteristics associated with historical urban
growth (POTENTIAL). After a parcel is selected, the developer ap-
proaches the corresponding landowner agent and offers to buy their
land. The landowner agent is activated to make a decision about
whether or not to sell the parcel to the developer. Upon a successful
developer-landowner transaction, the PGA sub-module creates a patch
of newly developed land as described by the FUTURES framework
(Meentemeyer et al., 2013). If the transaction fails (i.e., the landowner
agent is not willing to sell), the developer agent moves on to another

location and, hence, another landowner agent. This process continues
until the demand for development is met for each specified time in-
terval. In the case that no landowner agents are willing to sell their land
to meet the demand for development, the simulation stops.

In summary, urban land-use transitions only occur when there is de-
mand for developed land and suitable undeveloped parcels are available
where a landowner agent is willing to sell that property to a developer.
Demand and suitability are, among other factors, controlled by market
forces, while landowner willingness to sell is related to individual factors,
such as attachment to the land and knowledge of neighbors’ willingness to
sell their own properties. For details on the model implementation of
willingness to sell, see the ODD protocol (Appendix A).

2.2. Simulation experiment

2.2.1. Overview
We conducted a simulation experiment in order to test the func-

tionalities of the FUTURES-ABM modeling framework and to under-
stand how the newly implemented processes manifest themselves at the
landscape level. A description of the key functionalities and processes of
FUTURES-ABM is included in the ODD protocol (Appendix A). As a test
case, we selected the rapidly urbanizing area Cabarrus County, North
Carolina, using existing empirical data for measuring urban growth.
Here, we describe parameterization details of the model and present a
simulation experiment that illustrates key features of FUTURES-ABM.

Fig. 1. Schematic view of the FUTURES-ABM modeling framework. FUTURES-ABM consists of three sub-modules (POTENTIAL, DEMAND, and patch-growing
algorithm (PGA)), and includes two interacting agent types: A developer collective agent and a heterogeneous set of landowner agents. A developer agent decides to
buy land based on market demand for development and the suitability of the target parcel. Landowner agents will sell property to the developer agent based on their
internal willingness to sell and the willingness of their neighbors to sell. If a landowner agent decides to sell, the transaction is successful and a development is built
using the PGA. If they do not sell, the transaction is unsuccessful and the developer moves on to the next suitable property. Landscape patterns and agent char-
acteristics are updated at each simulation step.

J. Koch et al. Landscape and Urban Planning 182 (2019) 101–113

103



2.2.2. Study area
Cabarrus County is part of the Charlotte-Concord-Gastonia

Metropolitan Statistical Area (Fig. 2), which is ranked as one of the
fastest growing urban areas in the United States (United States Census
Bureau, 2017). In 2006, the base year of our simulation experiment,
114,989 people lived in Cabarrus County. Over the last four decades,
the county has experienced a significant increase in population from
75,026 in 1970 to 194,652 in 2016. Of the county’s total 94,404 ha,
approximately 42.8% (40,440 ha) is urban, 15.4% (14,573 ha) is cate-
gorized farmland, 32.8% (30,994 ha) is forest, and 9.0% is other natural
vegetation. We used a parcel dataset from Census.gov to define the
boundaries of landownership for agents. In 2014, Cabarrus County had
110,406 parcels, of which 29,790 were located on undeveloped land in
2006 and, hence, candidates for development during simulation runs.
Of these 29,790 parcels, not all were owned by individual landowners,
but some landowners own more than one parcel. According to the raw
parcel data, there are 16,820 individual landowner agents that own
developable land.

Suburban development in the region is primarily driven by urban
spillover from the nearby city of Charlotte. Patterns of new develop-
ment in Cabarrus County are influenced by environmental factors like
transportation infrastructure, the production potential of working
lands, and proximity to Charlotte’s urban center (Meentemeyer et al.,
2013). Although Charlotte has encouraged revitalization and densifi-
cation through the expansion of urban amenities and development
plans designed to accommodate its rapid growth, construction of In-
terstate 485 (Fig. 2) has opened up vast amounts of land for sprawling
suburban development (Delmelle, Zhou, & Thill, 2014).

2.2.3. Experimental design
In this experiment, we focused on three components that we con-

sider innovative contributions to the field of ABM-CA hybrid modeling
and simulation of spatial development patterns: (1) extension of agent
types typically included in ABM models of urban development (i.e.,
going beyond the developer agent and including different agent types
representing a typically understudied decision maker in the peri-urban
area – the landowner); (2) inclusion of an additional spatially explicit
decision-making process (i.e., the consideration of neighbors’ peer-in-
fluence on landowners’ decision to sell or not sell their land to devel-
opers); and (3) consideration of an additional spatial level of decision
making on land change (i.e., the combination of the grid-based CA and
the parcel-based ABM). To test the effect of the first two characteristics
on development patterns, we varied two main model parameters in our
simulation experiment: the initial distribution of landowner agents in
the landscape and the intensity of peer-influence on landowner deci-
sions to (not) sell their land to the developer agent. Overall, our si-
mulation experiment evaluates 15 different parameterizations by
varying these critical parameters.

We assessed the sensitivity of the FUTURES-ABM to landowner
agent locations by generating three different random realizations of
distributing these agents in the landscape (Fig. 3). While agent age and
income were held constant and allocated based on representative dis-
aggregation of census data (see Appendix A), no information on the
specific location of different agent types is available. We approached
this lack of information by including the location of agents of different
types (ExUrbanite, Lifestyle, Utilitarian, Economic Maximizer) as a
factor in the sensitivity analysis. Each of the three agent distributions

Fig. 2. Location of Cabarrus County land use (2011, NLCD) and proximity to the city of Charlotte.
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used the same percentage of landowner agents per type (25% each);
however, they differed in their parcel allocations. In other words, an
agent type was randomly placed on one parcel resulting in three dif-
fering landscape realizations for each of the simulation experiments.
We intentionally chose an even distribution of agents across parcels
(one fourth of the developable parcels for each of the four agent types)
in order to allow for an easy interpretation of the effect of agents’
varying positions in the landscape on the simulated urbanization pat-
terns. However, it is important to emphasize that the agent allocation is
based on percentage of parcels and not percentage of landscape, leading
to slightly different values of total area owned by agent type (Fig. 3) for
the three different distributions. This experimental design was loosely
based on two studies in the field of urban simulation modeling, those of
White and Engelen (1993) and Brown et al. (2007), which also test the
effect of varying landscape initializations on simulation results.

We tested the effect of peer-influence on urbanization patterns by
modifying the influence that landowner agents’ peers have on their
willingness to sell (WTS). Willingness to sell values range from 0 to 1,
with 0 indicating no willingness and 1 showing complete willingness to
sell a parcel to the developer agent collective. Initial probabilities of
individual willingness to sell (WTSI) based on age, income, landowner
agent type, and parcel desirability (see Section 2.2.4) were modified
based on average neighboring willingness to sell (WTSP), according to
Eq. (1).

= +Willingness To Sell WTS PW WTS PW( ) ( (1 ))P I (1)

We varied the degree of peer-influence (PW) from 0 to 1 with five
levels: ZERO (0), LOW (0.25), MEDIUM (0.5), HIGH (0.75), and
TOTAL (1.0), in order to test the sensitivity of the simulation model to
this parameter.

We combined each of the three landowner agent randomizations
with each level of peer-influence while holding all other model para-
meters constant. Since FUTURES-ABM includes non-deterministic
components, we carried out 10 simulation runs for each para-
meterization resulting in a total of 150 simulations. We ran simulations
for 20 steps corresponding to a time period of 20 years. While 10 si-
mulation runs is modest in comparison to similar agent-based modeling
experiments, the large number of agents in our simulation
(N=16,820) made for prohibitive extended runtimes. We provide a
detailed description of the numerical values used for the simulation
experiment in Section 2.2.4 and Appendix A, Section A3.

We calculated five different landscape class metrics using FRAGS-
TATS (McGarigal, 2015). While these metrics do not affect actors’ de-
cision making, they provide a way to analyze the effect of landowner
agents and different parameterizations on the size and spatial config-
uration of newly developed urban areas. The calculated class metrics
included the percentage of the landscape occupied by urban area
(PLAND), the number of urban patches (NP), the largest patch index
providing the percentage of the landscape occupied by the largest urban
patch (LPI), the total edge length of urban patches (TE), and the
clumpiness index (CLUMPY). Values for the clumpiness index range
from −1 to 1, with -1 indicating maximum disaggregation of urban
patches and 1 indicating maximum aggregation of urban patches. A
detailed description of the five class metrics can be found in McGarigal
(2015).

2.2.4. Model parameterization
2.2.4.1. DEMAND sub-module. Demand for new urban developments is
based on state population projections and expected land consumption
(e.g., people per impervious land unit area). For this purpose, we
extrapolated the relationship between impervious surface and
population numbers based on observations for the period 1976–2006
for the “status quo” scenario used for all simulations in this study. In
Cabarrus County, population per impervious area has decreased over
the last decades from 11.39 people/hectare in 1992 to 7.84 people/
hectare in 2011. Under the “status quo” scenario, the trend of decreased
population density continues. Given this rising land consumption and
state projections predicting an increase of approximately 50,000 people
over the next 20 years, we assumed growing demand for urbanization.
More details on the specification of the “status quo” are provided in
Dorning et al. (2015).

2.2.4.2. POTENTIAL sub-module. In the study region, distance to
overpasses and transportation networks are foci of urban expansion.
Adjacency to existing urban areas and the central business district
attract developments, while topography shapes where urbanization
occurs due to construction limitations of steeper slopes. We
parametrized the POTENTIAL sub-module according to these qualities
as described by the “status quo” specification in Dorning et al. (2015)
for all model runs. The developer collective considers the potential
when deciding which parcels to buy as well as other idiosyncrasies that
might influence location choice.

Fig. 3. Three different initial distributions of landowner agents in the landscape (A, B, and C). Agent age and income are held constant, while the landowner agent
type is randomly assigned to parcels.
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2.2.4.3. PGA sub-module. The size and extent of an individual new
development patch was prescribed by historical growth where
developers randomly draw from a calibrated pool of patch sizes and
grow or develop cells based on land suitability described by
Meentemeyer et al. (2013).

2.2.4.4. Developer collective. In the model, the developer collective
utilizes information provided by FUTURES sub-modules (DEMAND,
POTENTIAL, PGA) to develop land. Developers respond to new
demands for housing, infrastructure, and associated commercial and
industrial buildings by searching for suitable locations for land
development and choosing locations based on site suitability.
Developers approach landowners of the selected, suitable locations
and ask if they are willing to sell their land before determining if they
will buy a parcel and commence construction. If the landowner is
willing to sell, the developer builds a new patch of development
according to PGA specifications.

2.2.4.5. Landowner agents. We characterized landowners based on a
survey of woodland owners in Cabarrus and adjoining counties in the
Charlotte metropolitan region, which was part of a study on urban
woodland owners conducted by BenDor et al. (2014). Even though
landowners are not limited to woodland owners in the model, the
survey was the only available dataset suitable to parameterize
landowner agents. In the survey, respondents’ attachment to their
land and land management goals were investigated and related to
socioeconomic and spatial determinants that might explain these
perspectives (BenDor et al., 2014). Estimates of landowners’
willingness to sell were determined using a logistic regression model
where the intention to, the current listing of, or economic motivation
for selling their property was used as the dependent variable. Predictor
variables include the landowner’s age and income level, the mean
development potential of their property (POTENTIAL sub-module), and
their agent type (Table 1). Our general model indicates that with
increasing age and income, woodland owners are more likely to sell
their land. They also respond to site suitability of their land, likely
anticipating and deciding to sell their lands based on incoming
development. Despite moderately well fit (AUC=0.76) model
estimates of the probability for willingness to sell, we believe our
parameterization is the best available representation of landowner
behavior in this region.

We developed the landowner agent typology (Table 1) based on a
cluster analysis of the surveyed private urban woodland owners,
grouping like values based on multiple forest value responses (BenDor
et al., 2014). We parameterized owner types given a spectrum of land

attachment and lifestyle parameters, which we assumed influences their
willingness to sell due to different utilities. We included (1) an ExUr-
banite agent that due to their high to moderate attachment to their
woodlands are less likely to want to sell their property; (2) a Lifestyle
agent highly attached to their woodland, willing to sell their land given
changes to the character of the surrounding landscape; and (3) a Uti-
litarian agent that while valuing the productive capacity of their
woodlands would also sell their land if it were financially beneficial. In
addition, since this survey was based on private owners of undeveloped
land, we lacked a landowner type that was representative of a moti-
vated seller. We therefore added (4) an Economic Maximizer agent type
to represent those landowners whose primary motivation is to sell
property, such as corporations or absentee owners. While we realized
these typologies may not encompass the full range of landowner types
owning undeveloped land in the region, this application demonstrates
the utility of integrating survey data in the ABM-CA framework. A re-
presentative survey of owners of undeveloped land in the area of in-
terest would include canvassing these motivated owners.

3. Results

3.1. Completion of simulation runs

Of the 30 simulation runs for understanding the effect of landowner
agent distribution in the landscape (i.e., the three different initial dis-
tributions of landowners in the landscape with ZERO peer-influence,
each repeated 10 times), 20 did not fully execute to the intended 20
simulation steps (Table 2 – see “ZERO peer-influence” column). The
number of completed simulations differed between the three initial
distributions of landowners in the landscape. Further analysis of the
simulation results indicated that incomplete runs were due to a lack of
landowner agents willing to sell their land, cumulatively resulting in
relatively low average landscape-level decision to sell. The average area
comprising owners choosing to sell ranged from 30% for landscape A to
about 31% percent for landscape C, with landscape C having the
highest number of completed simulation runs (Table 3 – see “ZERO
peer-influence” column). This spatial variability in selling was also the
result of highly suitable land for urban development being overlaid
with different actor types, and hence willingness to sell values, caused
by the initial distributions of landowners in the landscape.

Simulation runs including LOW, MEDIUM, HIGH, and TOTAL peer-
influence levels showed that peer-influences also affected model com-
pletion with greater peer-influence resulting in fewer completed simu-
lation runs (Table 2). Increased levels of peer-influence decreased the
number of landowners deciding to sell across the landscape (Table 3),
limiting the number of parcels available for the developer agent to buy.
The 30 simulation runs for TOTAL peer-influence had the fewest
completed simulation steps, ranging between six and nine despite nu-
merous parcels potentially available for development. Related to the
low number of completed simulation runs, peer-influence had a sig-
nificant dampening effect on the landowners’ WTS, with TOTAL peer-
influence resulting in only 10% of the landscape with agents deciding to
sell their property (Table 3).

3.2. Development locations

To control for non-completion across model runs, we analyzed the
land-use/cover maps for each simulation run at simulation step six, the
last step completed by all 150 simulation runs. We mapped the average
number of occasions a parcel is developed across the 10 repetitions for
each parameterization. The development probability maps for ZERO
peer-influence and time step six indicated relatively little development

Table 1
Parameterization of individual landowner agent type’s willingness to sell
their property (WTSI). Utility function of each type is calculated as
follows: (AGE×0.0032)+ (POTENTIAL×0.869)+(INCOME*0.00000486)+
(ExUrbanite×−19.8)+ (Lifestyle×−3.8)+(Utilitarian×−2.1)+ (Economic
Maximizer×1), where each agent type is represented by 0 or 1, indicating the type
of agent under consideration. We apply Logit transformation to individual utility to
determine the probability of an agent selling their property.

Agent Type Description WTSI

ExUrbanite Conservative actors with conservative woodland
values (not in the political sense).

–

Lifestyle Highly value woodlands. –
Utilitarian Value services provided by woodlands. −/+
Economic Maximizer Primary motivation is to sell property, e.g.

corporations or absentee landowners.
++
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overall (16.7%–17.6% of the landscape), but a high level of agreement
on the parcels selected for development (Fig. 4). Approximately 3.7% of
the undeveloped land had a development probability of 90% or greater.
These parcels were mainly located in close proximity to developed
areas, the central business district of Concord (the county seat), and
along transportation infrastructure (I-85 and NC Highway 49) in the
central and north-central parts of Cabarrus County. This indicates that
the developer agent, approaching landowner agents on parcels with
high environmental suitability first, was successful in purchasing the
corresponding parcels for development.

For the parameterizations with LOW, MEDIUM, and HIGH peer-in-
fluence, the location of development probability showed little varia-
bility (Fig. 5). Again, most of the new development was located near
existing urban areas and along transportation infrastructure. Compared
to the ZERO peer-influence scenario, the LOW, MEDIUM, and HIGH
peer-influence scenarios resulted in more areas with medium develop-
ment probability (i.e., there was less agreement between the 10 re-
petitions for a scenario-landscape combination). Only about 3.3%,
2.9%, and 2.4% of the parcels selected for development had a devel-
opment probability of 90% or higher under the LOW, MEDIUM, and
HIGH peer-influence parameterizations, respectively.

The mapped simulation results showed the importance of spatial
interactions among agents on the locations of development probability
and development patterns in general; differences in development lo-
cations were clearly noticeable for experiments with total reliance on
peer-influence for willingness to sell values. The TOTAL peer-influence
maps indicated a larger area of parcels identified for development with
lower development probabilities on average. This is an indicator of the
rejection of sale offers, which leads to an increasingly random alloca-
tion of developed cells resulting in a “fuzzy” development probability
pattern. Only a low value of 2.6% of the parcels identified for devel-
opment had a development probability of 90% or higher.

3.3. Development patterns

Spatial patterns of development showed minimal variation between
the three different initial distributions of landowners in the landscape

(Fig. 6). Overall, simulation results for the percentage of the landscape
developed (PLAND) after simulation step six did not display significant
differences for any of the 15 parameterizations. All of them showed
around 47% of the landscape as developed. The class level metrics NP,
LPI, TE, and CLUMPY also displayed little difference between the three
distributions of landowners in the landscape (Fig. 7).

In contrast, the peer-influence level had a considerable effect on the
resulting spatial development patterns. For the ZERO peer-influence
scenarios, we found a qualitative difference in the number of patches
and the percentage of the landscape occupied by the largest patch
(Fig. 7). ZERO peer-influence (i.e., ignoring the spatial neighborhood’s
willingness to sell) resulted in a significantly higher number of patches
and smaller largest patches. This finding was consistent across all
landscape configurations. In combination with higher values for total
edge lengths and lower values for clumpiness (Fig. 7), these results
indicated higher landscape fragmentation for the ZERO peer-influence
scenario results.

Percentage of landscape developed, number of patches, and largest
patch index did not show a difference between the parameterization
with LOW, MEDIUM, HIGH, and TOTAL peer-influence (Figs. 6 and 7).
However, the total edge length was consistently higher, and the clum-
piness index was consistently lower, for parameterizations with TOTAL
and HIGH peer-influence as compared to those with MEDIUM and LOW
peer-influence (Fig. 7). Lower total edge lengths and a higher clumpi-
ness index indicated the least landscape fragmentation under these
parameterizations.

3.4. Actor diversity

Development patterns and pattern metrics showed little variation
between the simulation runs with LOW, MEDIUM, HIGH, and TOTAL
peer-influence. There was, however, a qualitative difference between
the simulation runs with peer-influence and the simulations with ZERO
peer-influence. In the ZERO peer-influence parameterization, the dif-
ferent landowner agent types covered the range of willingness to sell
values, leading to heterogeneous conversion rates (Table 4). Agents’
willingness and decisions to sell varied greatly by agent type, with

Table 2
Number of completed simulation steps for different peer-influence levels and the three initial distributions of landowner agents in the landscape (A, B, and C).

Scenarios ZERO peer-influence LOW peer-influence MEDIUM peer-influence HIGH peer-influence TOTAL peer-influence

Agent baseline distribution A B C A B C A B C A B C A B C

Number of simulation steps
successfully completed

18 18 19 19 20 20 18 19 20 11 11 12 6 6 7
18 19 19 19 20 20 19 19 20 12 11 12 7 7 8
19 19 19 20 20 20 19 20 20 12 12 12 7 7 8
19 19 19 20 20 20 19 20 20 12 12 12 7 7 8
19 19 20 20 20 20 19 20 20 12 12 12 7 7 8
19 19 20 20 20 20 19 20 20 12 12 12 7 8 8
19 19 20 20 20 20 19 20 20 12 12 14 7 8 8
19 20 20 20 20 20 20 20 20 12 12 14 7 8 8
19 20 20 20 20 20 20 20 20 12 12 19 8 8 9
20 20 20 20 20 20 20 20 20 13 12 20 8 8 9

Table 3
Landscape-level decision to sell at simulation step six for different peer-influence levels and the three initial distributions of landowner agents in the landscape (A, B,
and C).

Scenario ZERO peer-influence LOW peer-influence MEDIUM peer-influence HIGH peer-influence TOTAL peer-influence

Agent baseline distribution A B C A B C A B C A B C A B C

Average percent of landscape with
positive decision to sell

29.6 30.0 30.9 24.8 24.8 25.4 19.1 19.3 20.9 14.5 14.6 15.3 9.6 9.4 10.4

Maximum 30.7 31.1 32.7 25.9 25.9 27.6 20.3 19.9 22.4 15.8 16.3 15.8 10.8 9.8 11.1
Minimum 29.6 28.7 29.7 24.0 24.0 24.5 18.1 17.7 20.2 13.5 13.7 14.2 8.2 9.0 9.4
Standard deviation 0.8 0.8 0.9 0.6 0.6 1.0 0.7 0.7 0.8 0.8 0.8 0.5 0.8 0.3 0.5
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ExUrbanites and Lifestyle agents having lower WTS values and lower
urban development conversion rates compared to Economic Max-
imizers and Utilitarian agents (Table 4). In the MEDIUM peer-influence
parameterization, the same pattern was visible. Economic Maximizers
sold 19,224 cells, while ExUrbanites, who were highly attached to their
land, sold 9980 cells despite having equal numbers of each agent-type
(Table 5). Comparing the results for ZERO and MEDIUM peer-influence
parameterizations showed that mean values for decision to sell were
lower for MEDIUM peer-influence for two out of four agent types

(Tables 4 and 5). However, the mean willingness to sell was higher for
ExUrbanites, Lifestyle, and Utilitarian agents under MEDIUM peer-in-
fluence. These results not only demonstrated the moderating influence
of peer-influence on the agent’s decision to sell (see also Tables 2 and
3), but also the importance of a heterogeneous agent typology for
capturing a variety of values and attitudes. Variation in agent char-
acteristics and the level of peer-influence resulted in different rates of
sale for each group.

Fig. 4. Development probability maps for ZERO peer-influence and three different initial distributions of landowners in the landscape (A, B, and C). A high
development probability value indicates areas where all 10 simulation runs indicate development; low development probability values indicate areas where the
opposite is true.

Fig. 5. Development probability maps for landscape configuration A and (A) ZERO peer-influence, (B) LOW peer-influence, (C) MEDIUM peer-influence, (D) HIGH
peer-influence, (E) TOTAL peer-influence. A high development probability value indicates areas where all 10 simulation runs indicate development; low development
probability values indicate areas where the opposite is true.
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Fig. 6. Percentage of landscape developed (PLAND) after simulation step six, for landscape configuration A (blue), B (orange), and C (grey). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Class-level metrics Number of Patches (NP), Total Edge Length (TE), Percentage of Landscape Occupied by Largest Patch (LPI), and Clumpiness Index
(CLUMPY) for different levels of peer-influence and the three landscape configurations A (blue), B (orange), and C (grey). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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4. Discussion

We introduced three main components in a hybrid ABM-CA mod-
eling approach: a heterogeneous landowner (seller) agent typology;
peer-influence based on spatial neighborhood; and the combination of a
CA approach with the parcel level as the basis for decision-making. To
avoid redundancy, we used existing modeling frameworks and con-
cepts, combining the FUTURES model (Meentemeyer et al., 2013) with
conceptual frameworks introduced by Valbuena et al. (2010) and
Janssen (2011). We conducted a simulation experiment, including a
sensitivity analysis, to demonstrate how the newly introduced model
features can improve understanding of the complex spatial relation-
ships between agents and landscapes, and how they shape development
patterns in peri-urban areas. Our analysis demonstrates how the para-
meterization and distribution of agents and corresponding willingness
to sell may influence model functionality and simulation outcomes. We
also showed that varying degrees of peer-influence affected the con-
tiguity of (simulated) urban development patterns.

4.1. New model components for land change studies

Many land-change models, especially when designed to operate on
the regional to global scale, use a CA approach with the grid cell as the
basic spatial unit of change. This approach has limited potential for
implementing human decision-making regarding development, which
typically does not happen at the grid level but at the parcel level due to
ownership and land-management patterns (Brown, Pijanowski, & Duh,
2000). Hence, recent approaches focus on integrating the parcel level as
the spatial unit of decision-making for land-change simulations (Sohl,
Dornbierer, Wika, Sayler, & Quenzer, 2017). We expand on approaches
for merging grid and parcel boundaries by combining the CA-based
FUTURES (Meentemeyer et al., 2013) framework with parcel-level
ownership information in the form of an ABM. This integrated approach
is augmented by the theoretical foundation of the agent-based decision-
making framework. We use the concepts introduced by Valbuena et al.
(2010) and Janssen (2011) to study how preferences and values of
parcel owners or managers may shape the development process in peri-
urban areas.

The resulting hybrid FUTURES-ABM also expands on the typology
of agents represented in agent-based studies of urbanization. Typically,
ABMs only include agents who are motivated by utility (i.e., financial)
maximization; this dismisses the effect of heterogeneous landowner
preference and motivations on spatial patterns of development. For
example, Filatova’s (2015) ABM of an urban housing market focused on

one type of seller agent owning already developed land and generated
important findings on spatial pricing dynamics; however, the expansion
of developed areas (or actual development of a parcel) was not mod-
eled. Work by Magliocca, McConnell, Walls, and Safirova (2012a,b)
also builds on microeconomic assumptions, including spatial patterns of
urban expansion in ABM simulations for testing theoretical agent in-
teraction and resulting landscape configurations. However, the under-
lying microeconomic assumptions of these models do not account for
differences in individual utility and the influence of peers on the selling
processes. We build on these studies by accounting for the social pro-
cesses involved in land transactions including a heterogeneous agent
typology allowing us to represent differences in agents’ demographic
values and the influence that neighbors (peer-influence) may have on
their willingness to sell.

4.2. Influence of new model components

Our simulated land-use maps show qualitatively realistic develop-
ment patterns. We attribute this to including both environmental and
social drivers of land transitions that better represent the complex
spatial interactions involved in land purchases at the urban fringe.
Frameworks conceptualizing social processes as stochastic or using
abstract homogenous behavioral theory oversimplify the important
socio-spatial variations that influence spatial pattern (An, 2012). In-
clusion of parcel boundaries as discrete decision units that can be
partially or fully developed given agent and developer preferences also
influenced the realism of simulation results. While non-urban parcels
are often completely utilized in urban development, regulation for
proportion of green space and complex tenure arrangement can result
in both impervious and pervious land covers on the same parcel. By
combining the patch-growing algorithm of the FUTURES model at the
cellular level, and agents with discrete control over the sale of parcels
(Fig. 1), we were able to simulate this variation in urban patches no-
ticeable in landscape outcomes at the urban fringe.

While the high number of incomplete simulation runs was unin-
tended and a surprising result, it informed our understanding of how
heterogeneous agent types and their interactions with neighbors affect
urban transitions. Increasing peer-influence and different combinations
of agent types with particularly suitable parcels resulted in fewer
landowners deciding to sell their land, preventing sale of that land to a
developer (Tables 2 and 3). We chose not to bypass this process via
adjustment of parameter values, because at later simulation steps spa-
tial sorting would result in typical concentric development patterns due
to limited numbers of developable cells. By limiting model runs to six

Table 4
Differences in conversions and selling characteristics for the landowner agent types under ZERO peer-influence intensity.

Total Converted Converted Rate Willingness to Sell Decision to Sell

Max Min Sd Avg Max Min Sd Avg Max Min Sd Avg Max Min Sd Avg

ExUrbanite 3933 1498 611 2770 2.57% 1.02% 0.40% 1.83% 0.45 0.33 0.025 0.38 6.67% 2.71% 1.11% 4.47%
Lifestyle 8941 4255 1194 6463 4.68% 3.73% 0.28% 4.14% 0.46 0.35 0.036 0.40 8.32% 7.33% 0.24% 7.94%
Utilitarian 14,792 10,084 1216 12,521 9.90% 6.72% 0.80% 11.43% 0.52 0.45 0.019 0.48 13.97% 7.80% 1.50% 10.10%
Economic Maximizer 24,827 17,815 1792 21,424 18.68% 13.59% 1.39% 15.98% 0.65 0.37 0.063 0.56 30.05% 22.56% 1.68% 26.63%

Table 5
Differences in conversions and selling characteristics for the landowner agent types under MEDIUM peer-influence intensity.

Total Converted Converted Rate Willingness to Sell Decision to Sell

Max Min Sd Avg Max Min Sd Avg Max Min Sd Avg Max Min Sd Avg

ExUrbanite 10,556 5882 1067 7317 7.06% 3.98% 0.66% 4.86% 0.48 0.37 0.024 0.42 7.95% 3.78% 0.89% 5.47%
Lifestyle 12,627 6934 1258 9980 7.02% 5.69% 0.45% 6.33% 0.49 0.38 0.025 0.44 6.35% 4.97% 0.28% 5.73%
Utilitarian 15,784 10,943 1454 13,488 10.87% 7.37% 0.89% 9.12% 0.57 0.44 0.029 0.49 19.76% 7.60% 2.32% 10.15%
Economic Maximizer 21,791 16,275 1513 19,224 16.93% 12.21% 1.23% 14.47% 0.63 0.48 0.052 0.55 21.98% 15.42% 1.45% 18.39%
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simulation steps, we were able to identify the short-term micro changes
that occur, and the potential processes driving changes that would
otherwise become invisible due to eventual saturation of urbanization
resulting from high development pressure. Hence, our model and ex-
perimental setup led to the identification of a subtle spatial process with
important effects on development patterns.

Our results also display the pronounced effect of peer-influence on
the spatial configuration of urbanization. Since the majority of the
agents in our system were not profit motivated, willingness decreased
when factoring in the generally low willingness to sell of neighbors, i.e.,
higher peer-influence of immediate spatial neighbors leads to lower
landscape scale willingness to sell. Hence, neighbors acting together
resulted in more contiguous developed areas (Fig. 7). From a con-
ceptual point of view, this allowed us to analyze and visualize the in-
clusion of spatial neighborhood willingness to sell and to capture its
moderating effect resulting in land sparing outcomes.

4.3. Model limitations

The introduction of new model functionality in the context of our
simulation experiment resulted in several surprising but informative
insights about the importance of landowner decision-making in the
urban fringe. However, the current design and parameterization of the
ABM sub-model may benefit from a better empirical foundation. As
with a majority of modeling studies, this emphasizes the importance of
empirical studies that can be used to drive model assumptions (Janssen
& Ostrom, 2006; Smajgl, Brown, Valbuena, & Huigen, 2011). Specifi-
cally, we identified three key points that would benefit from more de-
tailed process representation and parameterization: (1) agent type
parameterization and allocation, (2) model representation of peer-in-
fluence, and (3) factors included in the decision-making process.

4.3.1. Agent type parameterization and allocation
The survey used to parameterize our agent types focused on

woodland owners only (BenDor et al., 2014). However, we used the
survey findings to define the parameters of all landowners on parcels
including other land-cover types. Also, in the absence of empirical
evidence of the landowners’ spatial distribution in the study system, we
allocated landowner types randomly in the landscape. We addressed
the latter by including the effect of the random landowner distribution
in the landscape as one component of our sensitivity analysis. To ad-
dress the former, more empirical studies are needed to better under-
stand decision-making of heterogeneous landowner types.

4.3.2. Model representation of peer-influence
In our current model implementation, peer-influence is represented

as an averaging of WTS over the spatial neighborhood of the focal
parcel – a simplified representation due to the lack of empirical data on
social networks in the study area. While this component of the mod-
eling framework provides the algorithms to connect a focal parcel (and
its actor) to a flexible number of parcels (and the corresponding actors)
through their identifiers, it is a highly simplified representation of peer-
influence with limited explanatory power. An empirically based para-
meterization that goes beyond the immediate spatial neighborhood and
a dynamic model representation of network structure (e.g., Fischer
et al., 2013) are important next steps to improve the explanatory power
of our modeling framework.

4.3.3. Decision-making process
The current modeling framework does not include a process re-

presentation for the effect of land prices on WTS and actor decision-
making in general. While many studies exist that analyze the effect of
land prices on land-use change (e.g., Filatova et al., 2009; Ligmann-
Zielinska, 2009; Magliocca et al., 2011), our intention was to add
complementary components (i.e., additional values and beliefs) to
model implementations of the decision-making process. An important

next step would be to combine our work with process representations
for consideration of land prices in decision-making.

5. Conclusions

We developed the hybrid FUTURES-ABM framework for modeling
development processes in the urban fringe including landowner deci-
sion-making at the parcel level and peer-influence of a spatial neigh-
borhood on this decision-making process. We used existing modeling
approaches and conceptual frameworks, and designed FUTURES-ABM
in a generic manner to allow for transferability to other study regions.
The results of our simulation experiment for Cabarrus County, North
Carolina, displayed the emergence of spatial development patterns
caused by the complex spatial relationships between parcel-level deci-
sion-making, the heterogeneous seller agents, and peer-influence. Our
results also suggest that local patterns may deviate from ‘optimal’ en-
vironmental conditions due to variation in willingness to sell and the
effect of peer-influence. Empirical evidence suggests that trade-offs
between the production of land influences land sale, however land at-
tachment also contributes to individual utility resulting in maintenance
of patches of forest and farmland (BenDor et al., 2014; Mullendore
et al., 2015). Questions remain as to whether such remnant un-
developed land will stay non-urban given retirement and inheritance of
land over time (Butler and Leatherberry, 2004). By incorporating an
ABM into an established CA framework, we have been able to de-
monstrate how the peer-influence amongst landowners can shape fu-
ture urban growth patterns.
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