80 research outputs found

    Role of Avarana in the etiopathogeneis of Urustambha

    Get PDF
    All the functions of the body are controlled by three fundamental factors called Tridosha. As per Ayurveda, these are considered as ‘the pillars of the body’. Dosha’s in the state of equilibrium perform the normal functions of the body but when they get vitiated, they cause diseases. Urustambha is a lifestyle disorder and it is commonly seen in the higher socio-economic status. Sushrutha Acharya named this disease as Adhyavata. Urustambha is a grave condition, in which the patient’s thighs become painful, numb and immobile. In this disease, deranged Vata due to intake of Apathya Ahara Vihara sub-charged with the Meda and Kapha settle down into the lower limbs which gives rise to painful and immobile condition of the lower limbs

    A Study of Osteoarticular Tuberculosis in a Tertiary Care Hospital of Bhopal, Madhya Pradesh

    Get PDF
    ABSTRACT Background: Osteoarticular tuberculosis (TB) represents 1-5% of all cases of tuberculous disease and 10-18% of extra pulmonary involvement. Signs and symptoms are frequently nonspecific making the disease difficult to diagnose. This study was conducted to find out the trend of various osteoarticular TB

    The Origin of High Activity of Amorphous MoS2 in the Hydrogen Evolution Reaction

    Get PDF
    Molybdenum disulfide (MoS2) and related transition metal chalcogenides can replace expensive precious metal catalysts such as Pt for the hydrogen evolution reaction (HER). The relations between the nanoscale properties and HER activity of well‐controlled 2H and Li‐promoted 1T phases of MoS2, as well as an amorphous MoS2 phase, have been investigated and a detailed comparison is made on Mo−S and Mo−Mo bond analysis under operando HER conditions, which reveals a similar bond structure in 1T and amorphous MoS2 phases as a key feature in explaining their increased HER activity. Whereas the distinct bond structure in 1T phase MoS2 is caused by Li+ intercalation and disappears under harsh HER conditions, amorphous MoS2 maintains its intrinsic short Mo−Mo bond feature and, with that, its high HER activity. Quantum‐chemical calculations indicate similar electronic structures of small MoS2 clusters serving as models for amorphous MoS2 and the 1T phase MoS2, showing similar Gibbs free energies for hydrogen adsorption (ΔGH*) and metallic character

    Spin distribution as a probe to investigate the dynamical effects in fusion reactions

    Full text link
    The spin distributions are measured for the compound nucleus 80Sr populated in the reactions 16O+64Zn and 32S+48Ti. The comparison of the experimental results for both the systems shows that the mean γ-ray multiplicity values for the system 32S+48Ti are lower than those for 16O+64Zn. The spin distribution of the compound nucleus populated through the symmetric channel is also found to be lower than the asymmetric channel. Present investigation directly shows the effect of entrance channel mass asymmetry on the reaction dynamics

    HER2-enriched subtype and novel molecular subgroups drive aromatase inhibitor resistance and an increased risk of relapse in early ER+/HER2+ breast cancer

    Get PDF
    BACKGROUND: Oestrogen receptor positive/ human epidermal growth factor receptor positive (ER+/HER2+) breast cancers (BCs) are less responsive to endocrine therapy than ER+/HER2- tumours. Mechanisms underpinning the differential behaviour of ER+HER2+ tumours are poorly characterised. Our aim was to identify biomarkers of response to 2 weeks’ presurgical AI treatment in ER+/HER2+ BCs. METHODS: All available ER+/HER2+ BC baseline tumours (n=342) in the POETIC trial were gene expression profiled using BC360™ (NanoString) covering intrinsic subtypes and 46 key biological signatures. Early response to AI was assessed by changes in Ki67 expression and residual Ki67 at 2 weeks (Ki672wk). Time-To-Recurrence (TTR) was estimated using Kaplan-Meier methods and Cox models adjusted for standard clinicopathological variables. New molecular subgroups (MS) were identified using consensus clustering. FINDINGS: HER2-enriched (HER2-E) subtype BCs (44.7% of the total) showed poorer Ki67 response and higher Ki672wk (p<0.0001) than non-HER2-E BCs. High expression of ERBB2 expression, homologous recombination deficiency (HRD) and TP53 mutational score were associated with poor response and immune-related signatures with High Ki672wk. Five new MS that were associated with differential response to AI were identified. HER2-E had significantly poorer TTR compared to Luminal BCs (HR 2.55, 95% CI 1.14–5.69; p=0.0222). The new MS were independent predictors of TTR, adding significant value beyond intrinsic subtypes. INTERPRETATION: Our results show HER2-E as a standardised biomarker associated with poor response to AI and worse outcome in ER+/HER2+. HRD, TP53 mutational score and immune-tumour tolerance are predictive biomarkers for poor response to AI. Lastly, novel MS identify additional non-HER2-E tumours not responding to AI with an increased risk of relapse

    The United States COVID-19 Forecast Hub dataset

    Get PDF
    Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    Polarized Raman spectroscopy to elucidate the texture of synthesized MoS2

    Get PDF
    Texture has a significant impact on several key properties of transition-metal dichalcogenides (TMDs) films. Films with in-plane oriented grains have been successfully implemented in nano- and opto-electronic devices, whereas, films with out-of-plane oriented material have shown excellent performance in catalytic applications. It will be demonstrated that the texture of nanocrystalline TMD films can be determined with polarized Raman spectroscopy. A model describing the impact of texture on the Raman response of 2D-TMDs will be presented. For the specific case of MoS2, the model was used to quantify the impact of texture on the relative strength of the A1g and E12g modes in both the unpolarized and polarized Raman configuration. Subsequently, the capability to characterize texture by polarized Raman was demonstrated on various MoS2 films grown by atomic-layer deposition (ALD) and validated by complementary transmission electron microscopy (TEM) and synchrotron based 2D grazing-incidence X-ray diffraction (GIXD) measurements. This also revealed how the texture evolved during ALD growth of MoS2 and subsequent annealing of the films. The insights presented in this work allow a deeper understanding of Raman spectra of nanocrystalline TMDs and enable a rapid and non-destructive method to probe texture
    corecore