1,662 research outputs found

    The Tunneling Hybrid Monte-Carlo algorithm

    Full text link
    The hermitian Wilson kernel used in the construction of the domain-wall and overlap Dirac operators has exceptionally small eigenvalues that make it expensive to reach high-quality chiral symmetry for domain-wall fermions, or high precision in the case of the overlap operator. An efficient way of suppressing such eigenmodes consists of including a positive power of the determinant of the Wilson kernel in the Boltzmann weight, but doing this also suppresses tunneling between topological sectors. Here we propose a modification of the Hybrid Monte-Carlo algorithm which aims to restore tunneling between topological sectors by excluding the lowest eigenmodes of the Wilson kernel from the molecular-dynamics evolution, and correcting for this at the accept/reject step. We discuss the implications of this modification for the acceptance rate.Comment: improved discussion in appendix B, RevTeX, 19 page

    Remark on lattice BRST invariance

    Full text link
    A recently claimed resolution to the lattice Gribov problem in the context of chiral lattice gauge theories is examined. Unfortunately, I find that the old problem remains.Comment: 4 pages, plain TeX, presentation improved (see acknowledgments

    Mobility edge in lattice QCD

    Full text link
    We determine the location λc\lambda_c of the mobility edge in the spectrum of the hermitian Wilson operator on quenched ensembles. We confirm a theoretical picture of localization proposed for the Aoki phase diagram. When λc>0\lambda_c>0 we also determine some key properties of the localized eigenmodes with eigenvalues λ<λc|\lambda|<\lambda_c. Our results lead to simple tests for the validity of simulations with overlap and domain-wall fermions.Comment: revtex, 4 pages, 1 figure, minor change

    Chiral Fermions on the Lattice through Gauge Fixing -- Perturbation Theory

    Get PDF
    We study the gauge-fixing approach to the construction of lattice chiral gauge theories in one-loop weak-coupling perturbation theory. We show how infrared properties of the gauge degrees of freedom determine the nature of the continuous phase transition at which we take the continuum limit. The fermion self-energy and the vacuum polarization are calculated, and confirm that, in the abelian case, this approach can be used to put chiral gauge theories on the lattice in four dimensions. We comment on the generalization to the nonabelian case.Comment: 31 pages, 5 figures, two refs. adde

    Perturbative study for domain-wall fermions in 4+1 dimensions

    Get PDF
    We investigate a U(1) chiral gauge model in 4+1 dimensions formulated on the lattice via the domain-wall method. We calculate an effective action for smooth background gauge fields at a fermion one loop level. From this calculation we discuss properties of the resulting 4 dimensional theory, such as gauge invariance of 2 point functions, gauge anomalies and an anomaly in the fermion number current.Comment: 39 pages incl. 9 figures, REVTeX+epsf, uuencoded Z-compressed .tar fil

    The Phase Diagram and Spectrum of Gauge-Fixed Abelian Lattice Gauge Theory

    Get PDF
    We consider a lattice discretization of a covariantly gauge-fixed abelian gauge theory. The gauge fixing is part of the action defining the theory, and we study the phase diagram in detail. As there is no BRST symmetry on the lattice, counterterms are needed, and we construct those explicitly. We show that the proper adjustment of these counterterms drives the theory to a new type of phase transition, at which we recover a continuum theory of (free) photons. We present both numerical and (one-loop) perturbative results, and show that they are in good agreement near this phase transition. Since perturbation theory plays an important role, it is important to choose a discretization of the gauge-fixing action such that lattice perturbation theory is valid. Indeed, we find numerical evidence that lattice actions not satisfying this requirement do not lead to the desired continuum limit. While we do not consider fermions here, we argue that our results, in combination with previous work, provide very strong evidence that this new phase transition can be used to define abelian lattice chiral gauge theories.Comment: 42 pages, 30 figure

    Before sailing on a domain-wall sea

    Full text link
    We discuss the very different roles of the valence-quark and the sea-quark residual masses (mresvm_{res}^v and mressm_{res}^s) in dynamical domain-wall fermions simulations. Focusing on matrix elements of the effective weak hamiltonian containing a power divergence, we find that mresvm_{res}^v can be a source of a much bigger systematic error. To keep all systematic errors due to residual masses at the 1% level, we estimate that one needs amress103a m_{res}^s \le 10^{-3} and amresv105a m_{res}^v \le 10^{-5}, at a lattice spacing a0.1a\sim 0.1 fm. The practical implications are that (1) optimal use of computer resources calls for a mixed scheme with different domain-wall fermion actions for the valence and sea quarks; (2) better domain-wall fermion actions are needed for both the sea and the valence sectors.Comment: latex, 25 pages. Improved discussion in appendix, including correction of some technical mistakes; ref. adde

    Analysis of Different Types of Regret in Continuous Noisy Optimization

    Get PDF
    The performance measure of an algorithm is a crucial part of its analysis. The performance can be determined by the study on the convergence rate of the algorithm in question. It is necessary to study some (hopefully convergent) sequence that will measure how "good" is the approximated optimum compared to the real optimum. The concept of Regret is widely used in the bandit literature for assessing the performance of an algorithm. The same concept is also used in the framework of optimization algorithms, sometimes under other names or without a specific name. And the numerical evaluation of convergence rate of noisy algorithms often involves approximations of regrets. We discuss here two types of approximations of Simple Regret used in practice for the evaluation of algorithms for noisy optimization. We use specific algorithms of different nature and the noisy sphere function to show the following results. The approximation of Simple Regret, termed here Approximate Simple Regret, used in some optimization testbeds, fails to estimate the Simple Regret convergence rate. We also discuss a recent new approximation of Simple Regret, that we term Robust Simple Regret, and show its advantages and disadvantages.Comment: Genetic and Evolutionary Computation Conference 2016, Jul 2016, Denver, United States. 201

    Conserved Quantities in f(R)f(R) Gravity via Noether Symmetry

    Full text link
    This paper is devoted to investigate f(R)f(R) gravity using Noether symmetry approach. For this purpose, we consider Friedmann Robertson-Walker (FRW) universe and spherically symmetric spacetimes. The Noether symmetry generators are evaluated for some specific choice of f(R)f(R) models in the presence of gauge term. Further, we calculate the corresponding conserved quantities in each case. Moreover, the importance and stability criteria of these models are discussed.Comment: 14 pages, accepted for publication in Chin. Phys. Let

    A study of chiral symmetry in quenched QCD using the Overlap-Dirac operator

    Get PDF
    We compute fermionic observables relevant to the study of chiral symmetry in quenched QCD using the Overlap-Dirac operator for a wide range of the fermion mass. We use analytical results to disentangle the contribution from exact zero modes and simplify our numerical computations. Details concerning the numerical implementation of the Overlap-Dirac operator are presented.Comment: 24 pages revtex with 5 postscript figures included by eps
    corecore