107 research outputs found

    An Application of Single-Valued Neutrosophic Sets in Medical Diagnosis

    Get PDF
    In this paper, we present the use of single-valued neutrosophic sets in medical diagnosis by using distance measures and similarity measures. Using interconnection between single-valued neutrosophic sets and symptoms of patient, we determine the type of disease. We define new distance formulas for single valued neutrosophic sets. We develop two new medical diagnosis algorithms under neutrosophic environment. We also solve a numerical example to illustrate the proposed algorithms and finally, we compare the obtained results

    Autonomous, Seamless and Resilience Carrier Cloud Brokerage Solution for Business Contingencies during Disaster Recovery

    Get PDF
    The challenge of disaster recovery management for cloud based services is constantly evolving. The costs of cloud service downtime in the event of disaster striking is the subject of much international research. The key issue to resolve is developing suitably resilient and seamless live/realtime mechanisms for disaster recovery. In this paper, we have implemented a proof of concept for an autonomous and fault tolerant carrier cloud brokerage solution with resilient provisioning of on-the-fly cloud resources. When a disaster strikes, the proposed solution will trigger the migration of an entire IaaS from one cloud to another without causing any disruption to the business. In the event of non-availability of hosts for the deployment of virtual network functions for different business processes, an on-the-fly host selection mechanism is proposed and implemented to locate other active compute hosts without any disruptions. In order to evaluate the performance of the proposed solution, we defined several usecase scenarios for each cloud service. This proposed solution will not only reduce the capital expenditure but also provides a reliable and efficient way to access the data during disaste

    Tremor in multiple sclerosis

    Get PDF
    Tremor is estimated to occur in about 25 to 60 percent of patients with multiple sclerosis (MS). This symptom, which can be severely disabling and embarrassing for patients, is difficult to manage. Isoniazid in high doses, carbamazepine, propranolol and gluthetimide have been reported to provide some relief, but published evidence of effectiveness is very limited. Most trials were of small size and of short duration. Cannabinoids appear ineffective. Tremor reduction can be obtained with stereotactic thalamotomy or thalamic stimulation. However, the studies were small and information on long-term functional outcome is scarce. Physiotherapy, tremor reducing orthoses, and limb cooling can achieve some functional improvement. Tremor in MS remains a significant challenge and unmet need, requiring further basic and clinical research

    Hamacher Interactive Hybrid Weighted Averaging Operators under Fermatean Fuzzy Numbers

    No full text
    A Fermatean fuzzy set is a more powerful tool to deal with uncertainties in the given information as compared to intuitionistic fuzzy set and Pythagorean fuzzy set and has energetic applications in decision-making. Aggregation operators are very helpful for assessing the given alternatives in the decision-making process, and their purpose is to integrate all the given individual evaluation values into a unified form. In this research article, some new aggregation operators are proposed under the Fermatean fuzzy set environment. Some deficiencies of the existing operators are discussed, and then, new operational law, by considering the interaction between the membership degree and nonmembership degree, is discussed to reduce the drawbacks of existing theories. Based on Hamacher’s norm operations, new averaging operators, namely, Fermatean fuzzy Hamacher interactive weighted averaging, Fermatean fuzzy Hamacher interactive ordered weighted averaging, and Fermatean fuzzy Hamacher interactive hybrid weighted averaging operators, are introduced. Some interesting properties related to these operators are also presented. To get the optimal alternative, a multiattribute group decision-making method has been given under proposed operators. Furthermore, we have explicated the comparison analysis between the proposed and existing theories for the exactness and validity of the proposed work

    Olefin Metathesis, p

    No full text

    Lightweight Computation to Robust Cloud Infrastructure for Future Technologies (Workshop Paper)

    Get PDF
    Hardware and software lightweight solutions became the mainstream for current and future emerging technologies. Container-based virtualization provides more efficient and faster solutions than traditional virtual machines, offering good scalability, flexibility, and multi-tenancy. They are capable of serving in a heterogeneous and dynamic environment across multiple domains, including IoT, cloud, fog, and multi-access edge computing. In this paper, we propose a lightweight solution for LCC (Live Container Cloud) that permits the user to access live/remote cloud resources faster. LCC can be embedded as a fog/edge node to permit the users to allocate and deallocate cloud resources. The performance of such a containerization technology is presented

    Cu-loaded C3N4-MgO nanorods for promising antibacterial and dye degradation

    No full text
    Photocatalytic and magnetic stability of two-dimensional nanomaterials is enhanced by metal doping, which is an environmentally friendly technique used in various industries. There is an urgent need to discover new antimicrobial compounds or extracts to address the crucial problem of increasing microbial resistance against current antibiotics. Similarliy, the whole world is facing water crisis and a possible cost-effective solution is photocatalysis. In this study, an economical and convenient co-precipitation method was adopted to synthesize copper (Cu) loaded graphitic carbon nitride (g-C3N4) and magnesium oxide (MgO) composites. Various concentrations (2.5, 5, 7.5, and 10%) of Cu were doped into a fixed amount of g-C3N4/MgO nanostructures for efficient photocatalytic and antimicrobial activities. Results showed that 2.5% Cu loaded samples exhibited best possible results for the photocatalytic activity and 10% loaded Cu nanocomposites displayed enhanced antimicrobial performance. Improved crystallinity and increase in crystal size upon doping were confirmed with X-ray differaction (XRD) analysis, which was corroborated with Selected Area Electron Diffraction (SAED) results. Fourier-transform infrared spectroscopy (FTIR) revealed that MgO spectra consisted of stretching vibrations of Mg-O bond and other functional groups with minor changes in the vibrational modes upon doping. An high resolution transmission electron microscope (HRTEM) fitted with Gatan (R) digital software indicated hexagonal phase formation in as-prepared samples and nanorods upon doping, with confirmed d-spacing values. The UV-visible spectroscopy (UV-Vis) analysis exhibited a slight redshift in absorption intensity leading to decreased bandgap (Eg) for Cu-loaded g-C3N4/MgO. Photoluminescence (PL) spectra were acquired to investigate the recombination of electron-hole pairs. X-ray photoelectron spectroscopy (XPS) was employed to evaluate the elemental and surface composition with binding energy alterations of Cu-loaded g-C3N4/MgO nanorods. The thermal stability and behavior of synthesized samples were investigated by differential scanning calorimetry thermoanalytical (DSC) analysis. Photocatalytic activity (PCA) of as-prepared samples were evaluated against methylene blue and ciprofloxacin (MB&CF) dye in acidic, neutral and basic medium. Furthermore, the efficient antimicrobial potential was evaluated against Escherichia Coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria

    Cu-loaded C3N4-MgO nanorods for promising antibacterial and dye degradation

    No full text
    Photocatalytic and magnetic stability of two-dimensional nanomaterials is enhanced by metal doping, which is an environmentally friendly technique used in various industries. There is an urgent need to discover new antimicrobial compounds or extracts to address the crucial problem of increasing microbial resistance against current antibiotics. Similarliy, the whole world is facing water crisis and a possible cost-effective solution is photocatalysis. In this study, an economical and convenient co-precipitation method was adopted to synthesize copper (Cu) loaded graphitic carbon nitride (g-C3N4) and magnesium oxide (MgO) composites. Various concentrations (2.5, 5, 7.5, and 10%) of Cu were doped into a fixed amount of g-C3N4/MgO nanostructures for efficient photocatalytic and antimicrobial activities. Results showed that 2.5% Cu loaded samples exhibited best possible results for the photocatalytic activity and 10% loaded Cu nanocomposites displayed enhanced antimicrobial performance. Improved crystallinity and increase in crystal size upon doping were confirmed with X-ray differaction (XRD) analysis, which was corroborated with Selected Area Electron Diffraction (SAED) results. Fourier-transform infrared spectroscopy (FTIR) revealed that MgO spectra consisted of stretching vibrations of Mg-O bond and other functional groups with minor changes in the vibrational modes upon doping. An high resolution transmission electron microscope (HRTEM) fitted with Gatan (R) digital software indicated hexagonal phase formation in as-prepared samples and nanorods upon doping, with confirmed d-spacing values. The UV-visible spectroscopy (UV-Vis) analysis exhibited a slight redshift in absorption intensity leading to decreased bandgap (Eg) for Cu-loaded g-C3N4/MgO. Photoluminescence (PL) spectra were acquired to investigate the recombination of electron-hole pairs. X-ray photoelectron spectroscopy (XPS) was employed to evaluate the elemental and surface composition with binding energy alterations of Cu-loaded g-C3N4/MgO nanorods. The thermal stability and behavior of synthesized samples were investigated by differential scanning calorimetry thermoanalytical (DSC) analysis. Photocatalytic activity (PCA) of as-prepared samples were evaluated against methylene blue and ciprofloxacin (MB&CF) dye in acidic, neutral and basic medium. Furthermore, the efficient antimicrobial potential was evaluated against Escherichia Coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria
    • …
    corecore