2 research outputs found

    Investigations into the Electrochemical, Surface, and Electrocatalytic Properties of the Surface-Immobilized Polyoxometalate, TBA<sub>3</sub>K[SiW<sub>10</sub>O<sub>36</sub>(PhPO)<sub>2</sub>]

    No full text
    Surface anchoring of an organic functionalized POM, TBA<sub>3</sub>K­[SiW<sub>10</sub>O<sub>36</sub>(PhPO)<sub>2</sub>] was carried out by two methods, the layer-by-layer (LBL) assembly technique by employing a pentaerythritol-based ruthenium­(II) metallodendrimer as a cationic moiety and also by entrapping the POM in a conducting polypyrrole film. The redox behavior of the constructed films was studied by using cyclic voltammetry and electrochemical impedance spectroscopy. The surface morphologies of the constructed multilayers were examined by scanning electron microscopy and atomic force microscopy. X-ray photoelectron spectroscopy was conducted to confirm the elements present within the fabricated films. The multilayer assembly was also investigated for its catalytic efficiency towards the reduction of nitrite

    Nitrate and nitrite electrocatalytic reduction at layer-by-layer films composed of Dawson-type heteropolyanions mono-substituted with transitional metal Ions and silver nanoparticles

    Get PDF
    A series of Dawson-type heteropolyanions (HPAs) mono-substituted with transitional metal ions (α2-[P2W17O61FeIII]8−, α2-[P2W17O61CuII]8− and α2-[P2W17O61NiII]8−) have exhibited electrocatalytic properties towards nitrate and nitrite reduction in slightly acidic media (pH 4.5). The immobilization of these HPAs into water-processable films developed via layer-by layer assembly with polymer-stabilized silver nanoparticles led to the fabrication of the electrocatalytic interfaces for both nitrate and nitrite reduction. The LBL assembly as well as the changes in the HPA properties by immobilization has been characterized by electrochemical methods. The effects of the substituent ions, outer layers and the cationic moieties utilized for the films assembly of the developed film on the performances of nitrate electrocatalysis has been elucidate
    corecore