57 research outputs found

    Multi-Functional Distributed Secondary Control for Autonomous Microgrids

    Get PDF

    Modelado matemático de microred isla con cargas estáticas y dinámicas

    Get PDF
    Aumentar el nivel de penetración de las unidades de generación distribuida y de los dispositivos electrónicos de potencia añade más complejidad y variabilidad al comportamiento dinámico de las microrredes. Para tales sistemas, el estudio del modelado y la estabilidad transitorios es esencial. Una de las principales desventajas de la mayoría de los estudios sobre modelado de microrredes es su excesiva atención al período de estado estable y la falta de atención al rendimiento de la microrred durante el período transitorio. En la mayoría de los trabajos de investigación no se ha estudiado el comportamiento de diferentes cargas de microrredes. Uno de los mecanismos de los estudios de estabilidad de sistemas de potencia es la aplicación del modelado del espacio de estados. Estos estudios incluyen el desarrollo de modelos espaciales de estados de varios componentes del sistema de energía y luego linealizarlos alrededor de un punto de equilibrio. En este artículo, se presenta un método integral para el modelado de microrredes en islas con cargas dinámicas y estáticas. El paso básico del método propuesto es la transformación a un modelo basado en dq0. Para encontrar un modelo completo y preciso de microrred basada en inversor en isla, los submódulos de generación, red y carga deben modelarse en la referencia dq local y luego transferirse a una referencia común. Los resultados de la simulación muestran la efectividad del enfoque de modelado propuesto para estudios de estabilidad transitori

    Dynamic modeling and transient stability analysis of distributed generators in a microgrid system

    Get PDF
    Increasing the penetration level of distributed generation units as well as power electronic devices adds more complexity and variability to the dynamic behaviour of the microgrids. For such systems, studying the transient modelling and stability is essential. One of the major disadvantages of most studies on microgrid modelling is their excessive attention to the steady state period and the lack of attention to microgrid performance during the transient period. In most of the research works, the behaviour of different microgrid loads has not been studied. One of the mechanisms of power systems stability studies is the application of state space modelling. This paper presents a mathematical model for connected inverters in microgrid systems with many variations of operating conditions. Nonlineal tools, phase-plane trajectory analysis, and Lyapunov method were employed to evaluate the limits of small signal models. Based on the results of the present study, applying the model allows for the analysis of the system when subjected to a severe transient disturbance such as loss of large load or generation. Studying the transient stability of microgrid systems in the standalone utility grid is useful and necessary for improving the design of the microgrid’s architecture

    Distributed Secondary Control for Islanded MicroGrids – A Networked Control Systems Approach

    Get PDF

    Distributed Secondary Control for Islanded MicroGrids - A Novel Approach

    Get PDF

    Low-Frequency Small-Signal Modeling of Interconnected AC Microgrids

    Get PDF

    Modeling, Stability Analysis and Active Stabilization of Multiple DC-Microgrids Clusters

    Get PDF

    Secondary Frequency and Voltage Control of Islanded Microgrids via Distributed Averaging

    Get PDF
    In this work we present new distributed controllers for secondary frequency and voltage control in islanded microgrids. Inspired by techniques from cooperative control, the proposed controllers use localized information and nearest-neighbor communication to collectively perform secondary control actions. The frequency controller rapidly regulates the microgrid frequency to its nominal value while maintaining active power sharing among the distributed generators. Tuning of the voltage controller provides a simple and intuitive trade-off between the conflicting goals of voltage regulation and reactive power sharing. Our designs require no knowledge of the microgrid topology, impedances or loads. The distributed architecture allows for flexibility and redundancy, and eliminates the need for a central microgrid controller. We provide a voltage stability analysis and present extensive experimental results validating our designs, verifying robust performance under communication failure and during plug-and-play operation.Comment: Accepted for publication in IEEE Transactions on Industrial Electronic
    • …
    corecore