408 research outputs found

    Forward Modeling of Space-borne Gravitational Wave Detectors

    Full text link
    Planning is underway for several space-borne gravitational wave observatories to be built in the next ten to twenty years. Realistic and efficient forward modeling will play a key role in the design and operation of these observatories. Space-borne interferometric gravitational wave detectors operate very differently from their ground based counterparts. Complex orbital motion, virtual interferometry, and finite size effects complicate the description of space-based systems, while nonlinear control systems complicate the description of ground based systems. Here we explore the forward modeling of space-based gravitational wave detectors and introduce an adiabatic approximation to the detector response that significantly extends the range of the standard low frequency approximation. The adiabatic approximation will aid in the development of data analysis techniques, and improve the modeling of astrophysical parameter extraction.Comment: 14 Pages, 14 Figures, RevTex

    Optimal filtering of the LISA data

    Get PDF
    The LISA time-delay-interferometry responses to a gravitational-wave signal are rewritten in a form that accounts for the motion of the LISA constellation around the Sun; the responses are given in closed analytic forms valid for any frequency in the band accessible to LISA. We then present a complete procedure, based on the principle of maximum likelihood, to search for stellar-mass binary systems in the LISA data. We define the required optimal filters, the amplitude-maximized detection statistic (analogous to the F statistic used in pulsar searches with ground-based interferometers), and discuss the false-alarm and detection probabilities. We test the procedure in numerical simulations of gravitational-wave detection.Comment: RevTeX4, 28 pages, 9 EPS figures. Minus signs fixed in Eq. (46) and Table II. Corrected discussion of F-statistic distribution in Sec. IV

    Modulator noise suppression in the LISA Time-Delay Interferometric combinations

    Full text link
    We previously showed how the measurements of some eighteen time series of relative frequency or phase shifts could be combined (1) to cancel the phase noise of the lasers, (2) to cancel the Doppler fluctuations due to non-inertial motions of the six optical benches, and (3) to remove the phase noise of the onboard reference oscillators required to track the photodetector fringes, all the while preserving signals from passinggravitational waves. Here we analyze the effect of the additional noise due to the optical modulators used for removing the phase fluctuations of the onboard reference oscillators. We use a recently measured noise spectrum of an individual modulator to quantify the contribution of modulator noise to the first and second-generation Time-Delay Interferometric (TDI) combinations as a function of the modulation frequency. We show that modulator noise can be made smaller than the expected proof-mass acceleration and optical-path noises if the modulation frequencies are larger than 682\approx 682 MHz in the case of the unequal-arm Michelson TDI combination X1X_1, 1.08\approx 1.08 GHz for the Sagnac TDI combination α1\alpha_1, and 706\approx 706 MHz for the symmetrical Sagnac TDI combination ζ1\zeta_1. These modulation frequencies are substantially smaller than previously estimated and may lead to less stringent requirements on the LISA's oscillator noise calibration subsystem.Comment: 17 pages, 5 figures. Submitted to: Phys. Rev. D 1

    Photon generation by laser-Compton scattering at the KEK-ATF

    Full text link
    We performed a photon generation experiment by laser-Compton scattering at the KEK-ATF, aiming to develop a Compton based polarized positron source for linear colliders. In the experiment, laser pulses with a 357 MHz repetition rate were accumulated and their power was enhanced by up to 250 times in the Fabry-Perot optical resonant cavity. We succeeded in synchronizing the laser pulses and colliding them with the 1.3 GeV electron beam in the ATF ring while maintaining the laser pulse accumulation in the cavity. As a result, we observed 26.0 +/- 0.1 photons per electron-laser pulse crossing, which corresponds to a yield of 10^8 photons in a second.Comment: 3 pages, 5 figures, Preprint submitted to TIPP09 Proceedings in NIM

    Annual modulation of the Galactic binary confusion noise bakground and LISA data analysis

    Full text link
    We study the anisotropies of the Galactic confusion noise background and its effects on LISA data analysis. LISA has two data streams of the gravitational waves signals relevant for low frequency regime. Due to the anisotropies of the background, the matrix for their confusion noises has off-diagonal components and depends strongly on the orientation of the detector plane. We find that the sky-averaged confusion noise level S(f)\sqrt {S(f)} could change by a factor of 2 in three months, and would be minimum when the orbital position of LISA is either around the spring or autumn equinox.Comment: 13 pages, 6 figure

    Optimal statistic for detecting gravitational wave signals from binary inspirals with LISA

    Full text link
    A binary compact object early in its inspiral phase will be picked up by its nearly monochromatic gravitational radiation by LISA. But even this innocuous appearing candidate poses interesting detection challenges. The data that will be scanned for such sources will be a set of three functions of LISA's twelve data streams obtained through time-delay interferometry, which is necessary to cancel the noise contributions from laser-frequency fluctuations and optical-bench motions to these data streams. We call these three functions pseudo-detectors. The sensitivity of any pseudo-detector to a given sky position is a function of LISA's orbital position. Moreover, at a given point in LISA's orbit, each pseudo-detector has a different sensitivity to the same sky position. In this work, we obtain the optimal statistic for detecting gravitational wave signals, such as from compact binaries early in their inspiral stage, in LISA data. We also present how the sensitivity of LISA, defined by this optimal statistic, varies as a function of sky position and LISA's orbital location. Finally, we show how a real-time search for inspiral signals can be implemented on the LISA data by constructing a bank of templates in the sky positions.Comment: 22 pages, 15 eps figures, Latex, uses iopart style/class files. Based on talk given at the 8th Gravitational Wave Data Analysis Workshop, Milwaukee, USA, December 17-20, 2003. Accepted for publication in Class. Quant. Gra

    Continuous variable polarization entanglement, experiment and analysis

    Full text link
    We generate and characterise continuous variable polarization entanglement between two optical beams. We first produce quadrature entanglement, and by performing local operations we transform it into a polarization basis. We extend two entanglement criteria, the inseparability criteria proposed by Duan {\it et al.}\cite{Duan00} and the Einstein-Podolsky-Rosen paradox criteria proposed by Reid and Drummond\cite{Reid88}, to Stokes operators; and use them to charactise the entanglement. Our results for the Einstein-Podolsky-Rosen paradox criteria are visualised in terms of uncertainty balls on the Poincar\'{e} sphere. We demonstrate theoretically that using two quadrature entangled pairs it is possible to entangle three orthogonal Stokes operators between a pair of beams, although with a bound 3\sqrt{3} times more stringent than for the quadrature entanglement.Comment: 12 pages, 13 figure

    A Cryogenic Silicon Interferometer for Gravitational-wave Detection

    Get PDF
    The detection of gravitational waves from compact binary mergers by LIGO has opened the era of gravitational wave astronomy, revealing a previously hidden side of the cosmos. To maximize the reach of the existing LIGO observatory facilities, we have designed a new instrument that will have 5 times the range of Advanced LIGO, or greater than 100 times the event rate. Observations with this new instrument will make possible dramatic steps toward understanding the physics of the nearby universe, as well as observing the universe out to cosmological distances by the detection of binary black hole coalescences. This article presents the instrument design and a quantitative analysis of the anticipated noise floor

    The Search for Gravitational Waves

    Full text link
    Experiments aimed at searching for gravitational waves from astrophysical sources have been under development for the last 40 years, but only now are sensitivities reaching the level where there is a real possibility of detections being made within the next five years. In this article a history of detector development will be followed by a description of current detectors such as LIGO, VIRGO, GEO 600, TAMA 300, Nautilus and Auriga. Preliminary results from these detectors will be discussed and related to predicted detection rates for some types of sources. Experimental challenges for detector design are introduced and discussed in the context of detector developments for the future.Comment: 21 pages, 7 figures, accepted J. Phys. B: At. Mol. Opt. Phy
    corecore