954 research outputs found

    A study investigating the effects of modified goggle optical designs on swimmer performance

    Get PDF
    Background: Use of prisms to improve comfort and posture is a common practice in optometry. This concept can be expanded into the competitive sports world by incorporating prisms into swim goggles. Prisms can theoretically allow the competitive swimmer to maintain a more efficient posture throughout their event. The current study assesses the potential benefits of base-up prism in goggles for free-style swimming. Method: Twenty-four collegiate swimmers were surveyed and tested. Each participant filled out an initial survey detailing their preferences and concerns pertaining to competition goggles. All swimmers performed two 1500-meter practices with the prototype, 35 prism diopter (p.d.), goggles prior to testing. Testing consisted of swimming a 200-meter timed trial with each of the experimental goggles and filling out a corresponding survey immediately after each trial. 35 p.d. base-up prism prototype goggles, 1 p.d. base-up prism goggles, and plano control goggles were evaluated by each participant. Results: Fit was the most important concern for these swimmers. Fit also had the lowest standard deviation, denoting a common level of concern among most of the participants. The second most important concern for these swimmers was fogging. The least important concern for the participants was drag, which had the second lowest number of responders. Swimmers also thought that clarity of the goggles was important. Swimmers thought that restriction of peripheral vision was one of the least important problems. The 1 p.d. goggle produced the fastest mean time, and yet was ranked the worst by participants. In the surveys following the time trials, participants specified that their posture and field of view were greatly improved with the 35 p.d. goggles. They were also willing to pay more for the 35 p.d. goggles than the plano goggles. Conclusion: Although the swimmers swam faster with the 35 p.d. goggles and ranked them higher than the plano goggles, these differences were not statistically significant. However, significantly more subjects did perceive the 35 p.d. goggles to be more beneficial than plano or 1 p.d. goggles

    Towards a global understanding of the drivers of marine and terrestrial biodiversity

    Get PDF
    Understanding the distribution of life’s variety has driven naturalists and scientists for centuries, yet this has been constrained both by the available data and the models needed for their analysis. Here we compiled data for over 67,000 marine and terrestrial species and used artificial neural networks to model species richness with the state and variability of climate, productivity, and multiple other environmental variables. We find terrestrial diversity is better predicted by the available environmental drivers than is marine diversity, and that marine diversity can be predicted with a smaller set of variables. Ecological mechanisms such as geographic isolation and structural complexity appear to explain model residuals and also identify regions and processes that deserve further attention at the global scale. Improving estimates of the relationships between the patterns of global biodiversity, and the environmental mechanisms that support them, should help in efforts to mitigate the impacts of climate change and provide guidance for adapting to life in the Anthropocene

    Results from the centers for disease control and prevention's predict the 2013-2014 Influenza Season Challenge

    Get PDF
    Background: Early insights into the timing of the start, peak, and intensity of the influenza season could be useful in planning influenza prevention and control activities. To encourage development and innovation in influenza forecasting, the Centers for Disease Control and Prevention (CDC) organized a challenge to predict the 2013-14 Unites States influenza season. Methods: Challenge contestants were asked to forecast the start, peak, and intensity of the 2013-2014 influenza season at the national level and at any or all Health and Human Services (HHS) region level(s). The challenge ran from December 1, 2013-March 27, 2014; contestants were required to submit 9 biweekly forecasts at the national level to be eligible. The selection of the winner was based on expert evaluation of the methodology used to make the prediction and the accuracy of the prediction as judged against the U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet). Results: Nine teams submitted 13 forecasts for all required milestones. The first forecast was due on December 2, 2013; 3/13 forecasts received correctly predicted the start of the influenza season within one week, 1/13 predicted the peak within 1 week, 3/13 predicted the peak ILINet percentage within 1 %, and 4/13 predicted the season duration within 1 week. For the prediction due on December 19, 2013, the number of forecasts that correctly forecasted the peak week increased to 2/13, the peak percentage to 6/13, and the duration of the season to 6/13. As the season progressed, the forecasts became more stable and were closer to the season milestones. Conclusion: Forecasting has become technically feasible, but further efforts are needed to improve forecast accuracy so that policy makers can reliably use these predictions. CDC and challenge contestants plan to build upon the methods developed during this contest to improve the accuracy of influenza forecasts. © 2016 The Author(s)

    Activation of the GLP-1 receptor by a non-peptidic agonist

    Get PDF
    Class B G-protein-coupled receptors are major targets for the treatment of chronic diseases, including diabetes and obesity1. Structures of active receptors reveal peptide agonists engage deep within the receptor core, leading to an outward movement of extracellular loop 3 and the tops of transmembrane helices 6 and 7, an inward movement of transmembrane helix 1, reorganization of extracellular loop 2 and outward movement of the intracellular side of transmembrane helix 6, resulting in G-protein interaction and activation2,3,4,5,6. Here we solved the structure of a non-peptide agonist, TT-OAD2, bound to the glucagon-like peptide-1 (GLP-1) receptor. Our structure identified an unpredicted non-peptide agonist-binding pocket in which reorganization of extracellular loop 3 and transmembrane helices 6 and 7 manifests independently of direct ligand interaction within the deep transmembrane domain pocket. TT-OAD2 exhibits biased agonism, and kinetics of G-protein activation and signalling that are distinct from peptide agonists. Within the structure, TT-OAD2 protrudes beyond the receptor core to interact with the lipid or detergent, providing an explanation for the distinct activation kinetics that may contribute to the clinical efficacy of this compound series. This work alters our understanding of the events that drive the activation of class B receptors

    Single electron yields from semileptonic charm and bottom hadron decays in Au++Au collisions at sNN=200\sqrt{s_{NN}}=200 GeV

    Full text link
    The PHENIX Collaboration at the Relativistic Heavy Ion Collider has measured open heavy-flavor production in minimum bias Au++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV via the yields of electrons from semileptonic decays of charm and bottom hadrons. Previous heavy-flavor electron measurements indicated substantial modification in the momentum distribution of the parent heavy quarks due to the quark-gluon plasma created in these collisions. For the first time, using the PHENIX silicon vertex detector to measure precision displaced tracking, the relative contributions from charm and bottom hadrons to these electrons as a function of transverse momentum are measured in Au++Au collisions. We compare the fraction of electrons from bottom hadrons to previously published results extracted from electron-hadron correlations in pp++pp collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV and find the fractions to be similar within the large uncertainties on both measurements for pT>4p_T>4 GeV/cc. We use the bottom electron fractions in Au++Au and pp++pp along with the previously measured heavy flavor electron RAAR_{AA} to calculate the RAAR_{AA} for electrons from charm and bottom hadron decays separately. We find that electrons from bottom hadron decays are less suppressed than those from charm for the region 3<pT<43<p_T<4 GeV/cc.Comment: 432 authors, 33 pages, 23 figures, 2 tables, 2011 data. v2 is version accepted for publication by Phys. Rev. C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    L\'evy-stable two-pion Bose-Einstein correlations in sNN=200\sqrt{s_{_{NN}}}=200 GeV Au++Au collisions

    Full text link
    We present a detailed measurement of charged two-pion correlation functions in 0%-30% centrality sNN=200\sqrt{s_{_{NN}}}=200 GeV Au++Au collisions by the PHENIX experiment at the Relativistic Heavy Ion Collider. The data are well described by Bose-Einstein correlation functions stemming from L\'evy-stable source distributions. Using a fine transverse momentum binning, we extract the correlation strength parameter λ\lambda, the L\'evy index of stability α\alpha and the L\'evy length scale parameter RR as a function of average transverse mass of the pair mTm_T. We find that the positively and the negatively charged pion pairs yield consistent results, and their correlation functions are represented, within uncertainties, by the same L\'evy-stable source functions. The λ(mT)\lambda(m_T) measurements indicate a decrease of the strength of the correlations at low mTm_T. The L\'evy length scale parameter R(mT)R(m_T) decreases with increasing mTm_T, following a hydrodynamically predicted type of scaling behavior. The values of the L\'evy index of stability α\alpha are found to be significantly lower than the Gaussian case of α=2\alpha=2, but also significantly larger than the conjectured value that may characterize the critical point of a second-order quark-hadron phase transition.Comment: 448 authors, 25 pages, 11 figures, 4 tables, 2010 data. v2 is version accepted for publication in Phys. Rev. C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    ϕ\phi meson production in dd++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV

    Full text link
    The PHENIX experiment has measured ϕ\phi meson production in dd++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV using the dimuon and dielectron decay channels. The ϕ\phi meson is measured in the forward (backward) dd-going (Au-going) direction, 1.2<y<2.21.2<y<2.2 (2.2<y<1.2-2.2<y<-1.2) in the transverse-momentum (pTp_T) range from 1--7 GeV/cc, and at midrapidity y<0.35|y|<0.35 in the pTp_T range below 7 GeV/cc. The ϕ\phi meson invariant yields and nuclear-modification factors as a function of pTp_T, rapidity, and centrality are reported. An enhancement of ϕ\phi meson production is observed in the Au-going direction, while suppression is seen in the dd-going direction, and no modification is observed at midrapidity relative to the yield in pp++pp collisions scaled by the number of binary collisions. Similar behavior was previously observed for inclusive charged hadrons and open heavy flavor indicating similar cold-nuclear-matter effects.Comment: 484 authors, 16 pages, 12 figures, 6 tables. v1 is the version accepted for publication in Phys. Rev. C. Data tables for the points plotted in the figures are given in the paper itsel
    corecore