669 research outputs found

    Ab initio study on the effects of transition metal doping of Mg2NiH4

    Get PDF
    Mg2NiH4 is a promising hydrogen storage material with fast (de)hydrogenation kinetics. Its hydrogen desorption enthalpy, however, is too large for practical applications. In this paper we study the effects of transition metal doping by first-principles density functional theory calculations. We show that the hydrogen desorption enthalpy can be reduced by ~0.1 eV/H2 if one in eight Ni atoms is replaced by Cu or Fe. Replacing Ni by Co atoms, however, increases the hydrogen desorption enthalpy. We study the thermodynamic stability of the dopants in the hydrogenated and dehydrogenated phases. Doping with Co or Cu leads to marginally stable compounds, whereas doping with Fe leads to an unstable compound. The optical response of Mg2NiH4 is also substantially affected by doping. The optical gap in Mg2NiH4 is ~1.7 eV. Doping with Co, Fe or Cu leads to impurity bands that reduce the optical gap by up to 0.5 eV.Comment: 8 pages, 4 figure

    First-principles calculations of the crystal structure, electronic structure, and thermodynamic stability of Be(BH4)2

    Get PDF
    Alanates and boranates are intensively studied because of their potential use as hydrogen storage materials. In this paper, we present a first-principles study of the electronic structure and the energetics of beryllium boranate BeBH42. From total energy calculations, we show that—in contrast to the other boranates and alanates—hydrogen desorption directly to the elements is likely and is at least competitive with desorption to the elemental hydride BeH2. The formation enthalpy of BeBH42 is only −0.14 eV/H2 at T=0 K. This low value can be rationalized by the participation of all atoms in the covalent bonding, which is in contrast to the ionic bonding observed in other boranates. From calculations of thermodynamic properties at finite temperature, we estimate a decomposition temperature of 162 K at a pressure of 1 bar

    Quantum Size Effects in the Atomistic Structure of Armchair-Nanoribbons

    Full text link
    Quantum size effects in armchair graphene nano-ribbons (AGNR) with hydrogen termination are investigated via density functional theory (DFT) in Kohn-Sham formulation. "Selection rules" will be formulated, that allow to extract (approximately) the electronic structure of the AGNR bands starting from the four graphene dispersion sheets. In analogy with the case of carbon nanotubes, a threefold periodicity of the excitation gap with the ribbon width (N, number of carbon atoms per carbon slice) is predicted that is confirmed by ab initio results. While traditionally such a periodicity would be observed in electronic response experiments, the DFT analysis presented here shows that it can also be seen in the ribbon geometry: the length of a ribbon with L slices approaches the limiting value for a very large width 1 << N (keeping the aspect ratio small N << L) with 1/N-oscillations that display the electronic selection rules. The oscillation amplitude is so strong, that the asymptotic behavior is non-monotonous, i.e., wider ribbons exhibit a stronger elongation than more narrow ones.Comment: 5 pages, 6 figure

    Automation methodologies and large-scale validation for GWGW, towards high-throughput GWGW calculations

    Full text link
    The search for new materials, based on computational screening, relies on methods that accurately predict, in an automatic manner, total energy, atomic-scale geometries, and other fundamental characteristics of materials. Many technologically important material properties directly stem from the electronic structure of a material, but the usual workhorse for total energies, namely density-functional theory, is plagued by fundamental shortcomings and errors from approximate exchange-correlation functionals in its prediction of the electronic structure. At variance, the GWGW method is currently the state-of-the-art {\em ab initio} approach for accurate electronic structure. It is mostly used to perturbatively correct density-functional theory results, but is however computationally demanding and also requires expert knowledge to give accurate results. Accordingly, it is not presently used in high-throughput screening: fully automatized algorithms for setting up the calculations and determining convergence are lacking. In this work we develop such a method and, as a first application, use it to validate the accuracy of G0W0G_0W_0 using the PBE starting point, and the Godby-Needs plasmon pole model (G0W0GNG_0W_0^\textrm{GN}@PBE), on a set of about 80 solids. The results of the automatic convergence study utilized provides valuable insights. Indeed, we find correlations between computational parameters that can be used to further improve the automatization of GWGW calculations. Moreover, we find that G0W0GNG_0W_0^\textrm{GN}@PBE shows a correlation between the PBE and the G0W0GNG_0W_0^\textrm{GN}@PBE gaps that is much stronger than that between GWGW and experimental gaps. However, the G0W0GNG_0W_0^\textrm{GN}@PBE gaps still describe the experimental gaps more accurately than a linear model based on the PBE gaps.Comment: 12 pages, 11 figure

    The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table

    Full text link
    First-principles calculations in crystalline structures are often performed with a planewave basis set. To make the number of basis functions tractable two approximations are usually introduced: core electrons are frozen and the diverging Coulomb potential near the nucleus is replaced by a smoother expression. The norm-conserving pseudopotential was the first successful method to apply these approximations in a fully ab initio way. Later on, more efficient and more exact approaches were developed based on the ultrasoft and the projector augmented wave formalisms. These formalisms are however more complex and developing new features in these frameworks is usually more difficult than in the norm-conserving framework. Most of the existing tables of norm- conserving pseudopotentials, generated long ago, do not include the latest developments, are not systematically tested or are not designed primarily for high accuracy. In this paper, we present our PseudoDojo framework for developing and testing full tables of pseudopotentials, and demonstrate it with a new table generated with the ONCVPSP approach. The PseudoDojo is an open source project, building on the AbiPy package, for developing and systematically testing pseudopotentials. At present it contains 7 different batteries of tests executed with ABINIT, which are performed as a function of the energy cutoff. The results of these tests are then used to provide hints for the energy cutoff for actual production calculations. Our final set contains 141 pseudopotentials split into a standard and a stringent accuracy table. In total around 70.000 calculations were performed to test the pseudopotentials. The process of developing the final table led to new insights into the effects of both the core-valence partitioning and the non-linear core corrections on the stability, convergence, and transferability of norm-conserving pseudopotentials. ...Comment: abstract truncated, 17 pages, 25 figures, 8 table

    Computationally-driven, high throughput identification of CaTe and Li3_\textrm{3}Sb as promising candidates for high mobility pp-type transparent conducting materials

    Full text link
    High-performance pp-type transparent conducting materials (TCMs) must exhibit a rare combination of properties including high mobility, transparency and pp-type dopability. The development of high-mobility/conductivity pp-type TCMs is necessary for many applications such as solar cells, or transparent electronic devices. Oxides have been traditionally considered as the most promising chemical space to dig out novel pp-type TCMs. However, non-oxides might perform better than traditional pp-type TCMs (oxides) in terms of mobility. We report on a high-throughput (HT) computational search for non-oxide pp-type TCMs from a large dataset of more than 30,000 compounds which identified CaTe and Li3_\textrm{3}Sb as very good candidates for high-mobility pp-type TCMs. From our calculations, both compounds are expected to be pp-type dopable: intrinsically for Li3_\textrm{3}Sb while CaTe would require extrinsic doping. Using electron-phonon computations, we estimate hole mobilities at room-temperature to be about 20 and 70 cm2^2/Vs for CaTe and Li3_\textrm{3}Sb, respectively. The computed hole mobility for Li3_\textrm{3}Sb is quite exceptional and comparable with the electron mobility in the best nn-type TCMs.Comment: 10 pages, 5 figure

    Assessing GW approaches for predicting core level binding energies

    Get PDF
    Here we present a systematic study on the performance of different GW approaches: G(0)W(0), G(0)W(0) with linearized quasiparticle equation (lin-G(0)W(0)), and quasiparticle self-consistent GW (qsGW), in predicting core level binding energies (CLBEs) on a series of representative molecules comparing to Kohn-Sham (KS) orbital energy-based results. KS orbital energies obtained using the PBE functional are 20-30 eV lower in energy than experimental values obtained from X-ray photoemission spectroscopy (XPS), showing that any Koopmans-like interpretation of KS core level orbitals fails dramatically. Results from qsGW lead to CLBEs that are closer to experimental values from XPS, yet too large. For the qsGW method, the mean absolute error is about 2 eV, an order of magnitude better than plain KS PBE orbital energies and quite close to predictions from Delta SCF calculations with the same functional, which are accurate within similar to 1 eV. Smaller errors of similar to 0.6 eV are found for qsGW CLBE shifts, again similar to those obtained using Delta SCF PBE. The computationally more affordable G(0)W(0) approximation leads to results less accurate than qsGW, with an error of similar to 9 eV for CLBEs and similar to 0.9 eV for their shifts. Interestingly, starting G(0)W(0) from PBEO reduces this error to similar to 4 eV with a slight improvement on the shifts as well (similar to 0.4 eV). The validity of the G(0)W(0) results is however questionable since only linearized quasiparticle equation results can be obtained. The present results pave the way to estimate CLBEs in periodic systems where Delta SCF calculations are not straightforward although further improvement is clearly needed

    A model for the formation energies of alanates and boranates

    Get PDF
    We develop a simple model for the formation energies (FEs) of alkali and lkaline earth alanates and boranates, based upon ionic bonding between metal cations and (AlH4)- or (BH4)- anions. The FEs agree well with values obtained from first principles calculations and with experimental FEs. The model shows that details of the crystal structure are relatively unimportant. The small size of the (BH4)- anion causes a strong bonding in the crystal, which makes boranates more stable than alanates. Smaller alkali or alkaline earth cations do not give an increased FE. They involve a larger ionization potential that compensates for the increased crystal bonding.Comment: 3 pages, 2 figure
    • …
    corecore