669 research outputs found
Ab initio study on the effects of transition metal doping of Mg2NiH4
Mg2NiH4 is a promising hydrogen storage material with fast (de)hydrogenation
kinetics. Its hydrogen desorption enthalpy, however, is too large for practical
applications. In this paper we study the effects of transition metal doping by
first-principles density functional theory calculations. We show that the
hydrogen desorption enthalpy can be reduced by ~0.1 eV/H2 if one in eight Ni
atoms is replaced by Cu or Fe. Replacing Ni by Co atoms, however, increases the
hydrogen desorption enthalpy. We study the thermodynamic stability of the
dopants in the hydrogenated and dehydrogenated phases. Doping with Co or Cu
leads to marginally stable compounds, whereas doping with Fe leads to an
unstable compound. The optical response of Mg2NiH4 is also substantially
affected by doping. The optical gap in Mg2NiH4 is ~1.7 eV. Doping with Co, Fe
or Cu leads to impurity bands that reduce the optical gap by up to 0.5 eV.Comment: 8 pages, 4 figure
First-principles calculations of the crystal structure, electronic structure, and thermodynamic stability of Be(BH4)2
Alanates and boranates are intensively studied because of their potential use as hydrogen storage materials. In this paper, we present a first-principles study of the electronic structure and the energetics of beryllium boranate BeBH42. From total energy calculations, we show that—in contrast to the other boranates and alanates—hydrogen desorption directly to the elements is likely and is at least competitive with desorption to the elemental hydride BeH2. The formation enthalpy of BeBH42 is only −0.14 eV/H2 at T=0 K. This low value can be rationalized by the participation of all atoms in the covalent bonding, which is in contrast to the ionic bonding observed in other boranates. From calculations of thermodynamic properties at finite temperature, we estimate a decomposition temperature of 162 K at a pressure of 1 bar
Quantum Size Effects in the Atomistic Structure of Armchair-Nanoribbons
Quantum size effects in armchair graphene nano-ribbons (AGNR) with hydrogen
termination are investigated via density functional theory (DFT) in Kohn-Sham
formulation. "Selection rules" will be formulated, that allow to extract
(approximately) the electronic structure of the AGNR bands starting from the
four graphene dispersion sheets. In analogy with the case of carbon nanotubes,
a threefold periodicity of the excitation gap with the ribbon width (N, number
of carbon atoms per carbon slice) is predicted that is confirmed by ab initio
results. While traditionally such a periodicity would be observed in electronic
response experiments, the DFT analysis presented here shows that it can also be
seen in the ribbon geometry: the length of a ribbon with L slices approaches
the limiting value for a very large width 1 << N (keeping the aspect ratio
small N << L) with 1/N-oscillations that display the electronic selection
rules. The oscillation amplitude is so strong, that the asymptotic behavior is
non-monotonous, i.e., wider ribbons exhibit a stronger elongation than more
narrow ones.Comment: 5 pages, 6 figure
Automation methodologies and large-scale validation for , towards high-throughput calculations
The search for new materials, based on computational screening, relies on
methods that accurately predict, in an automatic manner, total energy,
atomic-scale geometries, and other fundamental characteristics of materials.
Many technologically important material properties directly stem from the
electronic structure of a material, but the usual workhorse for total energies,
namely density-functional theory, is plagued by fundamental shortcomings and
errors from approximate exchange-correlation functionals in its prediction of
the electronic structure. At variance, the method is currently the
state-of-the-art {\em ab initio} approach for accurate electronic structure. It
is mostly used to perturbatively correct density-functional theory results, but
is however computationally demanding and also requires expert knowledge to give
accurate results. Accordingly, it is not presently used in high-throughput
screening: fully automatized algorithms for setting up the calculations and
determining convergence are lacking. In this work we develop such a method and,
as a first application, use it to validate the accuracy of using the
PBE starting point, and the Godby-Needs plasmon pole model
(@PBE), on a set of about 80 solids. The results of the
automatic convergence study utilized provides valuable insights. Indeed, we
find correlations between computational parameters that can be used to further
improve the automatization of calculations. Moreover, we find that
@PBE shows a correlation between the PBE and the
@PBE gaps that is much stronger than that between and
experimental gaps. However, the @PBE gaps still describe
the experimental gaps more accurately than a linear model based on the PBE
gaps.Comment: 12 pages, 11 figure
The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table
First-principles calculations in crystalline structures are often performed
with a planewave basis set. To make the number of basis functions tractable two
approximations are usually introduced: core electrons are frozen and the
diverging Coulomb potential near the nucleus is replaced by a smoother
expression. The norm-conserving pseudopotential was the first successful method
to apply these approximations in a fully ab initio way. Later on, more
efficient and more exact approaches were developed based on the ultrasoft and
the projector augmented wave formalisms. These formalisms are however more
complex and developing new features in these frameworks is usually more
difficult than in the norm-conserving framework. Most of the existing tables of
norm- conserving pseudopotentials, generated long ago, do not include the
latest developments, are not systematically tested or are not designed
primarily for high accuracy. In this paper, we present our PseudoDojo framework
for developing and testing full tables of pseudopotentials, and demonstrate it
with a new table generated with the ONCVPSP approach. The PseudoDojo is an open
source project, building on the AbiPy package, for developing and
systematically testing pseudopotentials. At present it contains 7 different
batteries of tests executed with ABINIT, which are performed as a function of
the energy cutoff. The results of these tests are then used to provide hints
for the energy cutoff for actual production calculations. Our final set
contains 141 pseudopotentials split into a standard and a stringent accuracy
table. In total around 70.000 calculations were performed to test the
pseudopotentials. The process of developing the final table led to new insights
into the effects of both the core-valence partitioning and the non-linear core
corrections on the stability, convergence, and transferability of
norm-conserving pseudopotentials. ...Comment: abstract truncated, 17 pages, 25 figures, 8 table
Computationally-driven, high throughput identification of CaTe and LiSb as promising candidates for high mobility -type transparent conducting materials
High-performance -type transparent conducting materials (TCMs) must
exhibit a rare combination of properties including high mobility, transparency
and -type dopability. The development of high-mobility/conductivity -type
TCMs is necessary for many applications such as solar cells, or transparent
electronic devices. Oxides have been traditionally considered as the most
promising chemical space to dig out novel -type TCMs. However, non-oxides
might perform better than traditional -type TCMs (oxides) in terms of
mobility. We report on a high-throughput (HT) computational search for
non-oxide -type TCMs from a large dataset of more than 30,000 compounds
which identified CaTe and LiSb as very good candidates for
high-mobility -type TCMs. From our calculations, both compounds are expected
to be -type dopable: intrinsically for LiSb while CaTe would
require extrinsic doping. Using electron-phonon computations, we estimate hole
mobilities at room-temperature to be about 20 and 70 cm/Vs for CaTe and
LiSb, respectively. The computed hole mobility for
LiSb is quite exceptional and comparable with the electron
mobility in the best -type TCMs.Comment: 10 pages, 5 figure
Assessing GW approaches for predicting core level binding energies
Here we present a systematic study on the performance of different GW approaches: G(0)W(0), G(0)W(0) with linearized quasiparticle equation (lin-G(0)W(0)), and quasiparticle self-consistent GW (qsGW), in predicting core level binding energies (CLBEs) on a series of representative molecules comparing to Kohn-Sham (KS) orbital energy-based results. KS orbital energies obtained using the PBE functional are 20-30 eV lower in energy than experimental values obtained from X-ray photoemission spectroscopy (XPS), showing that any Koopmans-like interpretation of KS core level orbitals fails dramatically. Results from qsGW lead to CLBEs that are closer to experimental values from XPS, yet too large. For the qsGW method, the mean absolute error is about 2 eV, an order of magnitude better than plain KS PBE orbital energies and quite close to predictions from Delta SCF calculations with the same functional, which are accurate within similar to 1 eV. Smaller errors of similar to 0.6 eV are found for qsGW CLBE shifts, again similar to those obtained using Delta SCF PBE. The computationally more affordable G(0)W(0) approximation leads to results less accurate than qsGW, with an error of similar to 9 eV for CLBEs and similar to 0.9 eV for their shifts. Interestingly, starting G(0)W(0) from PBEO reduces this error to similar to 4 eV with a slight improvement on the shifts as well (similar to 0.4 eV). The validity of the G(0)W(0) results is however questionable since only linearized quasiparticle equation results can be obtained. The present results pave the way to estimate CLBEs in periodic systems where Delta SCF calculations are not straightforward although further improvement is clearly needed
A model for the formation energies of alanates and boranates
We develop a simple model for the formation energies (FEs) of alkali and
lkaline earth alanates and boranates, based upon ionic bonding between metal
cations and (AlH4)- or (BH4)- anions. The FEs agree well with values obtained
from first principles calculations and with experimental FEs. The model shows
that details of the crystal structure are relatively unimportant. The small
size of the (BH4)- anion causes a strong bonding in the crystal, which makes
boranates more stable than alanates. Smaller alkali or alkaline earth cations
do not give an increased FE. They involve a larger ionization potential that
compensates for the increased crystal bonding.Comment: 3 pages, 2 figure
- …