12 research outputs found

    High signal-to-noise ratio ultra-compact lab-on-a-chip microflow cytometer enabled by silicon optical antennas

    Full text link
    [EN] We experimentally demonstrate an all-silicon nanoantenna-based micro-optofluidic cytometer showing a combination of high signal-to-noise ratio (SNR) > 14 dB and ultra-compact size. Thanks to the ultra-high directivity of the antennas (>150), which enables a state-of-the-art sub-micron resolution, we are able to avoid the use of the bulky devices typically employed to collimate light on chip (such as lenses or fibers). The nm-scale antenna cross section allows a dramatic reduction of the optical system footprint, from the mm-scale of previous approaches to a few mu m(2), yielding a notable reduction in the fabrication costs. This scheme paves the way to ultra-compact lab-on-a-chip devices that may enable new applications with potential impact on all branches of biological and health science.Funding from grant TEC2015-63838-C3-1-R OPTONANOSENS (MINECO/FEDER, UE) is acknowledged. C. G.-M. acknowledges support from project TEC2015-73581-JIN PHUTURE (AEI/FEDER, UE). This work was also supported by the EU-funded projects FP7-ICT PHOXTROT (No. 318240), the EU-funded H2020-FET-HPC EXANEST (No. 671553) and the Generalitat Valenciana's PROMETEO grant NANOMET PLUS (PROMETEO II/2014/34).Lechago-Buendia, S.; García Meca, C.; Sánchez Losilla, N.; Griol Barres, A.; Martí Sendra, J. (2018). High signal-to-noise ratio ultra-compact lab-on-a-chip microflow cytometer enabled by silicon optical antennas. Optics Express. 26(20):25645-25656. https://doi.org/10.1364/OE.26.02564525645256562620Redding, B., Liew, S. F., Sarma, R., & Cao, H. (2013). Compact spectrometer based on a disordered photonic chip. Nature Photonics, 7(9), 746-751. doi:10.1038/nphoton.2013.190Malinauskas, M., Žukauskas, A., Hasegawa, S., Hayasaki, Y., Mizeikis, V., Buividas, R., & Juodkazis, S. (2016). Ultrafast laser processing of materials: from science to industry. Light: Science & Applications, 5(8), e16133-e16133. doi:10.1038/lsa.2016.133Fan, X., & White, I. M. (2011). Optofluidic microsystems for chemical and biological analysis. Nature Photonics, 5(10), 591-597. doi:10.1038/nphoton.2011.206Zheludev, N. I., & Kivshar, Y. S. (2012). From metamaterials to metadevices. Nature Materials, 11(11), 917-924. doi:10.1038/nmat3431Zhang, Y., Watts, B., Guo, T., Zhang, Z., Xu, C., & Fang, Q. (2016). Optofluidic Device Based Microflow Cytometers for Particle/Cell Detection: A Review. Micromachines, 7(4), 70. doi:10.3390/mi7040070Chen, X., Li, C., & Tsang, H. K. (2011). Device engineering for silicon photonics. NPG Asia Materials, 3(1), 34-40. doi:10.1038/asiamat.2010.194Luka, G., Ahmadi, A., Najjaran, H., Alocilja, E., DeRosa, M., Wolthers, K., … Hoorfar, M. (2015). Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications. Sensors, 15(12), 30011-30031. doi:10.3390/s151229783Padgett, M., & Bowman, R. (2011). Tweezers with a twist. Nature Photonics, 5(6), 343-348. doi:10.1038/nphoton.2011.81Yih Shiau. (1976). Dielectric Rod Antennas for Millimeter-Wave Integrated Circuits (Short Papers). IEEE Transactions on Microwave Theory and Techniques, 24(11), 869-872. doi:10.1109/tmtt.1976.1128980Brongersma, M. L. (2008). Engineering optical nanoantennas. Nature Photonics, 2(5), 270-272. doi:10.1038/nphoton.2008.60Alù, A., & Engheta, N. (2010). Wireless at the Nanoscale: Optical Interconnects using Matched Nanoantennas. Physical Review Letters, 104(21). doi:10.1103/physrevlett.104.213902Novotny, L., & van Hulst, N. (2011). Antennas for light. Nature Photonics, 5(2), 83-90. doi:10.1038/nphoton.2010.237Giannini, V., Fernández-Domínguez, A. I., Heck, S. C., & Maier, S. A. (2011). Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters. Chemical Reviews, 111(6), 3888-3912. doi:10.1021/cr1002672Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E. S., & Watts, M. R. (2013). Large-scale nanophotonic phased array. Nature, 493(7431), 195-199. doi:10.1038/nature11727Van Acoleyen, K., Rogier, H., & Baets, R. (2010). Two-dimensional optical phased array antenna on silicon-on-Insulator. Optics Express, 18(13), 13655. doi:10.1364/oe.18.013655García-Meca, C., Lechago, S., Brimont, A., Griol, A., Mas, S., Sánchez, L., … Martí, J. (2017). On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices. Light: Science & Applications, 6(9), e17053-e17053. doi:10.1038/lsa.2017.53Robinson, J. P., & Roederer, M. (2015). Flow cytometry strikes gold. Science, 350(6262), 739-740. doi:10.1126/science.aad6770Mao, X., Nawaz, A. A., Lin, S.-C. S., Lapsley, M. I., Zhao, Y., McCoy, J. P., … Huang, T. J. (2012). An integrated, multiparametric flow cytometry chip using «microfluidic drifting» based three-dimensional hydrodynamic focusing. Biomicrofluidics, 6(2), 024113. doi:10.1063/1.3701566Huang, N.-T., Zhang, H., Chung, M.-T., Seo, J. H., & Kurabayashi, K. (2014). Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection. Lab Chip, 14(7), 1230-1245. doi:10.1039/c3lc51211hPsaltis, D., Quake, S. R., & Yang, C. (2006). Developing optofluidic technology through the fusion of microfluidics and optics. Nature, 442(7101), 381-386. doi:10.1038/nature05060Cheung, K. C., Di Berardino, M., Schade-Kampmann, G., Hebeisen, M., Pierzchalski, A., Bocsi, J., … Tárnok, A. (2010). Microfluidic impedance-based flow cytometry. Cytometry Part A, 77A(7), 648-666. doi:10.1002/cyto.a.20910Cheung, K., Gawad, S., & Renaud, P. (2005). Impedance spectroscopy flow cytometry: On-chip label-free cell differentiation. Cytometry Part A, 65A(2), 124-132. doi:10.1002/cyto.a.20141Xie, X., Cheng, Z., Xu, Y., Liu, R., Li, Q., & Cheng, J. (2017). A sheath-less electric impedance micro-flow cytometry device for rapid label-free cell classification and viability testing. Analytical Methods, 9(7), 1201-1212. doi:10.1039/c6ay03326aBlasi, T., Hennig, H., Summers, H. D., Theis, F. J., Cerveira, J., Patterson, J. O., … Rees, P. (2016). Label-free cell cycle analysis for high-throughput imaging flow cytometry. Nature Communications, 7(1). doi:10.1038/ncomms10256Soref, R. (2006). The Past, Present, and Future of Silicon Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 12(6), 1678-1687. doi:10.1109/jstqe.2006.883151Frankowski, M., Theisen, J., Kummrow, A., Simon, P., Ragusch, H., Bock, N., … Neukammer, J. (2013). Microflow Cytometers with Integrated Hydrodynamic Focusing. Sensors, 13(4), 4674-4693. doi:10.3390/s130404674Barat, D., Spencer, D., Benazzi, G., Mowlem, M. C., & Morgan, H. (2012). Simultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometer. Lab Chip, 12(1), 118-126. doi:10.1039/c1lc20785gTesta, G., Persichetti, G., & Bernini, R. (2014). Micro flow cytometer with self-aligned 3D hydrodynamic focusing. Biomedical Optics Express, 6(1), 54. doi:10.1364/boe.6.000054Etcheverry, S., Faridi, A., Ramachandraiah, H., Kumar, T., Margulis, W., Laurell, F., & Russom, A. (2017). High performance micro-flow cytometer based on optical fibres. Scientific Reports, 7(1). doi:10.1038/s41598-017-05843-7Kosako, T., Kadoya, Y., & Hofmann, H. F. (2010). Directional control of light by a nano-optical Yagi–Uda antenna. Nature Photonics, 4(5), 312-315. doi:10.1038/nphoton.2010.34Taillaert, D., Van Laere, F., Ayre, M., Bogaerts, W., Van Thourhout, D., Bienstman, P., & Baets, R. (2006). Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides. Japanese Journal of Applied Physics, 45(8A), 6071-6077. doi:10.1143/jjap.45.6071Potcoava, M. C., Futia, G. L., Aughenbaugh, J., Schlaepfer, I. R., & Gibson, E. A. (2014). Raman and coherent anti-Stokes Raman scattering microscopy studies of changes in lipid content and composition in hormone-treated breast and prostate cancer cells. Journal of Biomedical Optics, 19(11), 111605. doi:10.1117/1.jbo.19.11.111605Traub, M. C., Longsine, W., & Truskett, V. N. (2016). Advances in Nanoimprint Lithography. Annual Review of Chemical and Biomolecular Engineering, 7(1), 583-604. doi:10.1146/annurev-chembioeng-080615-034635Xu, B.-B., Zhang, Y.-L., Xia, H., Dong, W.-F., Ding, H., & Sun, H.-B. (2013). Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing. Lab on a Chip, 13(9), 1677. doi:10.1039/c3lc50160dZucker, R. M., Ortenzio, J. N. R., & Boyes, W. K. (2015). Characterization, detection, and counting of metal nanoparticles using flow cytometry. Cytometry Part A, 89(2), 169-183. doi:10.1002/cyto.a.22793Kowalczyk, B., Lagzi, I., & Grzybowski, B. A. (2011). Nanoseparations: Strategies for size and/or shape-selective purification of nanoparticles. Current Opinion in Colloid & Interface Science, 16(2), 135-148. doi:10.1016/j.cocis.2011.01.00

    Ultra-compact TE and TM pass polarizers based on vanadium dioxide on silicon

    Full text link
    "This paper was published in Optics Letters and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OL.40.001452. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law"[EN] Vanadium dioxide (VO2) is a metal-insulator transition (MIT) oxide recently used in plasmonics, metamaterials, and reconfigurable photonics. Because of the MIT, VO2 shows great change in its refractive index allowing for ultra-compact devices with low power consumption. We theoretically demonstrate a transverse electric (TE) and a transverse magnetic (TM) pass polarizer with an ultra-compact length of only 1 μm and tunable using the MIT of the VO2. During the insulating phase, both devices exhibit insertion losses below 2 dB at 1550 nm. Changing to the metallic phase, the unwanted polarization is attenuated above 15 dB while insertion losses are kept below 3 dB. Broadband operation over a range of 60 nm is also achieved.This work was supported by the European Commission under project FP7-ICT-2013-11-619456 SITOGA. Financial support from TEC2012-38540 LEOMIS is also acknowledged. L. Sanchez also acknowledges the Generalitat Valenciana for funding his grant in the context of the VALi+d program.Sánchez Diana, LD.; Lechago Buendía, S.; Sanchis Kilders, P. (2015). Ultra-compact TE and TM pass polarizers based on vanadium dioxide on silicon. Optics Letters. 40(7):1452-1455. https://doi.org/10.1364/OL.40.001452S14521455407Soref, R., & Larenzo, J. (1986). All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 µm. IEEE Journal of Quantum Electronics, 22(6), 873-879. doi:10.1109/jqe.1986.1073057Jalali, B., & Fathpour, S. (2006). Silicon Photonics. Journal of Lightwave Technology, 24(12), 4600-4615. doi:10.1109/jlt.2006.885782Manolatou, C., Johnson, S. G., Fan, S., Villeneuve, P. R., Haus, H. A., & Joannopoulos, J. D. (1999). High-density integrated optics. Journal of Lightwave Technology, 17(9), 1682-1692. doi:10.1109/50.788575Alonso-Ramos, C., Halir, R., Ortega-Moñux, A., Cheben, P., Vivien, L., Molina-Fernández, Í., … Schmid, J. (2012). Highly tolerant tunable waveguide polarization rotator scheme. Optics Letters, 37(17), 3534. doi:10.1364/ol.37.003534Zhang, H., Das, S., Zhang, J., Huang, Y., Li, C., Chen, S., … Thong, J. T. L. (2012). Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics. Applied Physics Letters, 101(2), 021105. doi:10.1063/1.4734640Aamer, M., Gutierrez, A. M., Brimont, A., Vermeulen, D., Roelkens, G., Fedeli, J.-M., … Sanchis, P. (2012). CMOS Compatible Silicon-on-Insulator Polarization Rotator Based on Symmetry Breaking of the Waveguide Cross Section. IEEE Photonics Technology Letters, 24(22), 2031-2034. doi:10.1109/lpt.2012.2218593Komatsu, M., Saitoh, K., & Koshiba, M. (2012). Compact Polarization Rotator Based on Surface Plasmon Polariton With Low Insertion Loss. IEEE Photonics Journal, 4(3), 707-714. doi:10.1109/jphot.2012.2195650Caspers, J. N., Alam, M. Z., & Mojahedi, M. (2012). Compact hybrid plasmonic polarization rotator. Optics Letters, 37(22), 4615. doi:10.1364/ol.37.004615Chen, G., Chen, L., Ding, W., Sun, F., & Feng, R. (2013). Ultrashort slot polarization rotator with double paralleled nonlinear geometry slot crossings. Optics Letters, 38(11), 1984. doi:10.1364/ol.38.001984Nakayama, K., Shoji, Y., & Mizumoto, T. (2012). Single Trench SiON Waveguide TE-TM Mode Converter. IEEE Photonics Technology Letters, 24(15), 1310-1312. doi:10.1109/lpt.2012.2202646Sánchez, L., & Sanchis, P. (2013). Broadband 8 μm long hybrid silicon-plasmonic transverse magnetic–transverse electric converter with losses below 2 dB. Optics Letters, 38(15), 2842. doi:10.1364/ol.38.002842Zhang, H., Huang, Y., Das, S., Li, C., Yu, M., Lo, P. G.-Q., … Thong, J. (2013). Polarization splitter using horizontal slot waveguide. Optics Express, 21(3), 3363. doi:10.1364/oe.21.003363Ding, Y., Liu, L., Peucheret, C., & Ou, H. (2012). Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler. Optics Express, 20(18), 20021. doi:10.1364/oe.20.020021Ding, Y., Ou, H., & Peucheret, C. (2013). Wideband polarization splitter and rotator with large fabrication tolerance and simple fabrication process. Optics Letters, 38(8), 1227. doi:10.1364/ol.38.001227Dai, D., & Bowers, J. E. (2011). Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires. Optics Express, 19(11), 10940. doi:10.1364/oe.19.010940Xiao, Z., Luo, X., Lim, P. H., Prabhathan, P., Silalahi, S. T. H., Liow, T.-Y., … Luan, F. (2013). Ultra-compact low loss polarization insensitive silicon waveguide splitter. Optics Express, 21(14), 16331. doi:10.1364/oe.21.016331Chee, J., Zhu, S., & Lo, G. Q. (2012). CMOS compatible polarization splitter using hybrid plasmonic waveguide. Optics Express, 20(23), 25345. doi:10.1364/oe.20.025345Huang, Y., Zhu, S., Zhang, H., Liow, T.-Y., & Lo, G.-Q. (2013). CMOS compatible horizontal nanoplasmonic slot waveguides TE-pass polarizer on silicon-on-insulator platform. Optics Express, 21(10), 12790. doi:10.1364/oe.21.012790Sun, X., Alam, M. Z., Wagner, S. J., Aitchison, J. S., & Mojahedi, M. (2012). Experimental demonstration of a hybrid plasmonic transverse electric pass polarizer for a silicon-on-insulator platform. Optics Letters, 37(23), 4814. doi:10.1364/ol.37.004814Alam, M., Aitchsion, J. S., & Mojahedi, M. (2011). Compact hybrid TM-pass polarizer for silicon-on-insulator platform. Applied Optics, 50(15), 2294. doi:10.1364/ao.50.002294Alam, M. Z., Aitchison, J. S., & Mojahedi, M. (2011). Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer. Optics Letters, 37(1), 55. doi:10.1364/ol.37.000055Zhoufeng Ying, Guanghui Wang, Xuping Zhang, Ying Huang, Ho-Pui Ho, & Yixin Zhang. (2015). Ultracompact TE-Pass Polarizer Based on a Hybrid Plasmonic Waveguide. IEEE Photonics Technology Letters, 27(2), 201-204. doi:10.1109/lpt.2014.2365029Avrutsky, I. (2008). Integrated Optical Polarizer for Silicon-on-Insulator Waveguides Using Evanescent Wave Coupling to Gap Plasmon–Polaritons. IEEE Journal of Selected Topics in Quantum Electronics, 14(6), 1509-1514. doi:10.1109/jstqe.2008.926284Dai, D., Wang, Z., Julian, N., & Bowers, J. E. (2010). Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides. Optics Express, 18(26), 27404. doi:10.1364/oe.18.027404Ryckman, J. D., Diez-Blanco, V., Nag, J., Marvel, R. E., Choi, B. K., Haglund, R. F., & Weiss, S. M. (2012). Photothermal optical modulation of ultra-compact hybrid Si-VO_2 ring resonators. Optics Express, 20(12), 13215. doi:10.1364/oe.20.013215Ruzmetov, D., Gopalakrishnan, G., Ko, C., Narayanamurti, V., & Ramanathan, S. (2010). Three-terminal field effect devices utilizing thin film vanadium oxide as the channel layer. Journal of Applied Physics, 107(11), 114516. doi:10.1063/1.3408899Briggs, R. M., Pryce, I. M., & Atwater, H. A. (2010). Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition. Optics Express, 18(11), 11192. doi:10.1364/oe.18.011192Kruger, B. A., Joushaghani, A., & Poon, J. K. S. (2012). Design of electrically driven hybrid vanadium dioxide (VO_2) plasmonic switches. Optics Express, 20(21), 23598. doi:10.1364/oe.20.023598Ooi, K. J. A., Bai, P., Chu, H. S., & Ang, L. K. (2013). Ultracompact vanadium dioxide dual-mode plasmonic waveguide electroabsorption modulator. Nanophotonics, 2(1). doi:10.1515/nanoph-2012-0028Chen, S., Yi, X., Ma, H., Wang, H., Tao, X., Chen, M., & Ke, C. (2003). A novel structural VO2micro-optical switch. Optical and Quantum Electronics, 35(15), 1351-1355. doi:10.1023/b:oqel.0000009429.14136.3dJoushaghani, A., Kruger, B. A., Paradis, S., Alain, D., Stewart Aitchison, J., & Poon, J. K. S. (2013). Sub-volt broadband hybrid plasmonic-vanadium dioxide switches. Applied Physics Letters, 102(6), 061101. doi:10.1063/1.4790834Ryckman, J. D., Hallman, K. A., Marvel, R. E., Haglund, R. F., & Weiss, S. M. (2013). Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition. Optics Express, 21(9), 10753. doi:10.1364/oe.21.010753Sweatlock, L. A., & Diest, K. (2012). Vanadium dioxide based plasmonic modulators. Optics Express, 20(8), 8700. doi:10.1364/oe.20.008700Kim, J. T. (2014). CMOS-compatible hybrid plasmonic modulator based on vanadium dioxide insulator-metal phase transition. Optics Letters, 39(13), 3997. doi:10.1364/ol.39.00399

    Accurately Modeling a Photonic NoC in a Detailed CMP Simulation Framework

    Full text link
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Photonic interconnects are a promising solution for the so-called communication bottleneck in current Chip Multiprocessor (CMPs) architectures. This technology presents an inherent low-latency and power consumption almost independent of communication distance, which are really desirable features in future Networks on Chip for next CMPs generations. However, since nanophotonic technology is still growing and therefore in an immature state, current simulators of detailed systems may not provide accurate models of photonic components. In this context, non-representative results are obtained when unaccurate photonic models are assumed. This paper summarizes all of the components that conform a fully operative photonic NoC and presents their current state of the art. Moreover, we evaluate a realistic photonic network that consists of two photonic rings and a token-based arbitration mechanism and compare it against a non-realistic model. In addition, both realistic and non-realistic schemes are valuated under different configurations varying the number of wavelengths that photonic waveguides employ. The experimental results show that the non-realistic NoC presents up 6× network latency deviation with respect to the accurate model. This deviation is translated into a performance deviation higher than 10% in several applications studied, which demonstrates the importance of accurate models when simulating current technologies under development like nanophotonics. Finally, a power consumption model of the realistic photonic network is presented. The results show that the overall photonic network power consumption grows with the number of wavelengths per waveguide since the number of required modulators and receivers becomes higher. In this way, the proposed realistic photonic network, which employs only two wavelengths for arbitration and destination selection tasks, increases its power consumption up to 3%, so network designs with more complex arbitration mechanisms must take into account the impact of the number of wavelengths on the power consumption.This work was supported by the Spanish Ministerio de Economía y Competitividad (MINECO) and by Plan E funds under Grant TIN2015-66972-C5-1-R and the ExaNest project, funded by the European Union’s Horizon 2020 research andinnovation programme under grant agreement No 671553.Puche Lara, J.; Lechago Buendía, S.; Petit Martí, SV.; Gómez Requena, ME.; Sahuquillo Borrás, J. (2016). Accurately Modeling a Photonic NoC in a Detailed CMP Simulation Framework. IEEE. https://doi.org/10.1109/HPCSim.2016.756836

    All-Silicon On-Chip Optical Nanoantennas as Efficient Interfaces for Plasmonic Devices

    Full text link
    [EN] Plasmonic technology promises to unfold new advanced on-chip functionalities with direct applications in photovoltaics, light¿matter interaction, and the miniaturization of optical interconnects at the nanoscale. In this scenario, it is crucial to efficiently drive light to/from plasmonic devices. However, typically used plasmonic wires introduce prohibitive losses, hampering their use for many applications. Recently, plasmonic nanoantennas have been proposed to overcome this drawback, not only providing a notable loss reduction, but also an enhanced on-chip flexibility and reconfigurability. Nevertheless, these devices still perform poorly for long-reach interconnects, owing to their low-directive radiation and low efficiency. Here, we introduce a class of slot-waveguide-based silicon nanoantennas that lift all these limitations and show their feasibility to be connected directly and efficiently to plasmonic devices. To test the performance of these antennae, an on-chip plasmonic-dielectric interconnect is experimentally demonstrated over distances as high as 100 ¿m. In an outstanding manner, our wireless scheme clearly outperforms previous plasmonic approaches in terms of link efficiency and effective gain. This work paves the way for the development of ultrafast on-chip wireless reconfigurable and flexible interconnects and, additionally, opens new avenues in optical manipulation and sensing applications.This work was supported by Project TEC2015-73581-JIN PHUTURE (AEI/FEDER, UE) and Generalitat Valenciana s PROMETEO Grant NANOMET PLUS (PROMETEO II/2014/34).Lechago-Buendia, S.; García Meca, C.; Griol Barres, A.; Kovylina, M.; Bellieres, LC.; Martí Sendra, J. (2019). All-Silicon On-Chip Optical Nanoantennas as Efficient Interfaces for Plasmonic Devices. ACS Photonics. 6(5):1094-1099. https://doi.org/10.1021/acsphotonics.8b01596S109410996

    Characterisation of on-chip wireless interconnects based on silicon nanoantennas via near-field scanning optical microscopy

    Full text link
    This paper is a postprint of a paper submitted to and accepted for publication in IET Optoelectronics and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at IET Digital Library.[EN] Recently, a novel Photonic-Integrated Circuit (PIC) paradigm based on the use of a new kind of ultra-directive, lowloss, highly efficient and broadband silicon nanoantenna has enabled the first demonstration of an on-chip wireless interconnect, with potential applications in reconfigurable networks and lab-on-a-chip systems. Despite the fact that the far-field properties of these nanoantennas have been widely studied, their near-field behaviour stays unexplored. Here, the authors study this feature through scanning near-field optical microscopy (SNOM). For this purpose, the authors design and characterise an on-chip twoport wireless link using a tailored SNOM. The conducted near-field measurements will be useful to improve the design of these integrated photonic devices with potential impact on a variety of applications, from biosensing to optical communications.Funding support from the Spanish Ministry of Economy and Competiveness under grants TEC2015-63838-C3-1-R OPTONANOSENS (MINECO/FEDER, UE) and TEC2015-73581-JIN PHUTURE (AEI/FEDER, UE), the EU-funded H2020-FET-HPC EXANEST (No. 671553) and the GeneralitatValenciana's PROMETEO grant NANOMET PLUS (PROMETEO II/2014/34) are acknowledged. E.P.-C. acknowledges support from GeneralitatValenciana under Grant APOSTD/2016/025.Díaz-Fernández, FJ.; Pinilla-Cienfuegos, E.; García Meca, C.; Lechago-Buendia, S.; Griol Barres, A.; Martí Sendra, J. (2019). Characterisation of on-chip wireless interconnects based on silicon nanoantennas via near-field scanning optical microscopy. IET Optoelectronics. 13(2):72-76. https://doi.org/10.1049/iet-opt.2018.5071S7276132Kirchain, R., & Kimerling, L. (2007). A roadmap for nanophotonics. Nature Photonics, 1(6), 303-305. doi:10.1038/nphoton.2007.84Zhang, Y., Watts, B., Guo, T., Zhang, Z., Xu, C., & Fang, Q. (2016). Optofluidic Device Based Microflow Cytometers for Particle/Cell Detection: A Review. Micromachines, 7(4), 70. doi:10.3390/mi7040070Redding, B., Liew, S. F., Sarma, R., & Cao, H. (2013). Compact spectrometer based on a disordered photonic chip. Nature Photonics, 7(9), 746-751. doi:10.1038/nphoton.2013.190Fan, X., & White, I. M. (2011). Optofluidic microsystems for chemical and biological analysis. Nature Photonics, 5(10), 591-597. doi:10.1038/nphoton.2011.206Condrat, C., Kalla, P., & Blair, S. (2014). Crossing-Aware Channel Routing for Integrated Optics. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 33(6), 814-825. doi:10.1109/tcad.2014.2317575Brongersma, M. L. (2008). Engineering optical nanoantennas. Nature Photonics, 2(5), 270-272. doi:10.1038/nphoton.2008.60Bellanca, G., Calò, G., Kaplan, A. E., Bassi, P., & Petruzzelli, V. (2017). Integrated Vivaldi plasmonic antenna for wireless on-chip optical communications. Optics Express, 25(14), 16214. doi:10.1364/oe.25.016214Krasnok, A. E., Miroshnichenko, A. E., Belov, P. A., & Kivshar, Y. S. (2012). All-dielectric optical nanoantennas. Optics Express, 20(18), 20599. doi:10.1364/oe.20.020599Krasnok, A. E., Simovski, C. R., Belov, P. A., & Kivshar, Y. S. (2014). Superdirective dielectric nanoantennas. Nanoscale, 6(13), 7354-7361. doi:10.1039/c4nr01231cGarcía-Meca, C., Lechago, S., Brimont, A., Griol, A., Mas, S., Sánchez, L., … Martí, J. (2017). On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices. Light: Science & Applications, 6(9), e17053-e17053. doi:10.1038/lsa.2017.53Kosako, T., Kadoya, Y., & Hofmann, H. F. (2010). Directional control of light by a nano-optical Yagi–Uda antenna. Nature Photonics, 4(5), 312-315. doi:10.1038/nphoton.2010.34Dvořák, P., Édes, Z., Kvapil, M., Šamořil, T., Ligmajer, F., Hrtoň, M., … Šikola, T. (2017). Imaging of near-field interference patterns by aperture-type SNOM – influence of illumination wavelength and polarization state. Optics Express, 25(14), 16560. doi:10.1364/oe.25.016560Bazylewski, P., Ezugwu, S., & Fanchini, G. (2017). A Review of Three-Dimensional Scanning Near-Field Optical Microscopy (3D-SNOM) and Its Applications in Nanoscale Light Management. Applied Sciences, 7(10), 973. doi:10.3390/app710097

    Analysis and design optimization of a hybrid VO2/Silicon 2x2 microring switch

    Full text link
    The metal-to-insulator transition (MIT) property of vanadium dioxide (VO2) has been recently used in several application fields like plasmonics, sensing, metamaterials and optical modulation. Due to the MIT nature, VO2 allows a huge change in its complex refractive index that can be electro-optically controlled. In this work, the analysis and design optimization of a 2x2 microring switch based on a hybrid VO2/silicon waveguide structure is addressed. Switching is achieved by exploiting the change in both absorption loss and phase shift that occurs in the VO2 when changing from the insulating to the metallic state. The device is optimized to minimize insertion losses and crosstalk. An active length of only 2.8µm is required to achieve a data throughput rate higher than 500Gbps at a single optical wavelength.This work was also supported by LEOMIS (TEC2012-38540) and NANOMET PLUS-Conselleria d'Educacio, Cultura i Esport (PROMETEOII/2014/034). The work of L. Sanchez was supported by the Generalitat Valenciana in the context of the VALi+d program.Sánchez Diana, LD.; Lechago-Buendia, S.; Gutiérrez Campo, AM.; Sanchis Kilders, P. (2016). Analysis and design optimization of a hybrid VO2/Silicon 2x2 microring switch. IEEE Photonics Journal. 8(2):1-9. https://doi.org/10.1109/JPHOT.2016.2551463S198

    Low-Power Operation in a Silicon Switch Based on an Asymmetric Mach Zehnder Interferometer

    Full text link
    [EN] Mach Zehnder interferometer (MZI) structures are widely used as optical switches in photonic integrated circuits. However, power consumption is still the key parameter to make such devices practical in the silicon platform, particularly for those based on the thermo-optic effect. A new approach to significantly decrease the power consumption of a silicon switch based on an asymmetric MZI, together with an optimum selection of the operation wavelengths, is proposed. A power consumption reduction up to 50% is experimentally demonstrated in agreement with simulation results.This work was supported by TEC2012-38540 LEOMIS and NANOMET PLUS-Conselleria d'Educacio, Cultura i EsportPROMETEOII/2014/034. The work of L. Sanchez was supported by Generalitat Valenciana in the context of the VALi+d program.Sánchez Diana, LD.; Griol Barres, A.; Lechago Buendía, S.; Brimont, ACJ.; Sanchis Kilders, P. (2015). Low-Power Operation in a Silicon Switch Based on an Asymmetric Mach Zehnder Interferometer. IEEE Photonics Journal. 7(2):1-8. https://doi.org/10.1109/JPHOT.2015.2407317S187

    On-chip wireless silicon photonics: From reconfigurable interconnects to lab-on-chip devices

    Full text link
    [EN] Photonic integrated circuits are developing as key enabling components for high-performance computing and advanced network-on-chip, as well as other emerging technologies such as lab-on-chip sensors, with relevant applications in areas from medicine and biotechnology to aerospace. These demanding applications will require novel features, such as dynamically reconfigurable light pathways, obtained by properly harnessing on-chip optical radiation. In this paper, we introduce a broadband, high-directivity (>150), low-loss, and reconfigurable silicon photonics nanoantenna that fully enables on-chip radiation control. We propose the use of these nanoantennas as versatile building blocks to develop wireless (unguided) silicon photonic devices, which considerably enhance the range of achievable integrated photonic functionalities. As examples of applications, we demonstrate 160 Gbit·s-1 data transmission over mm-scale wireless interconnects, a compact low-crosstalk 12-port crossing, and electrically reconfigurable pathways via optical beam steering. Moreover, the realization of a flow micro-cytometer for particle characterization demonstrates the smart system integration potential of our approach as lab-on-chip devices.Funding from grant TEC2015-63838-C3-1-R OPTONANOSENS (MINECO/FEDER, UE) is acknowledged. This work was also supported by project TEC2015-73581-JIN (AEI/FEDER, UE), the EU-funded projects FP7-ICT PHOXTROT (No.318240) and H2020-, the EU-funded H2020-FET-HPC EXANEST (No.671553) and the Generalitat Valenciana's PROMETEO grant NANOMET PLUS (PROMETEO II/2014/34) CG-M acknowledges support from Generalitat Valenciana’s VALi+d postdoctoral program (exp. APOSTD/ 2014/044). We thank David Zurita for his help in the design of the data acquisition code for the sensing application.García Meca, C.; Lechago-Buendia, S.; Brimont, ACJ.; Griol Barres, A.; Mas Gómez, SM.; Sánchez Diana, LD.; Bellieres, LC.... (2017). On-chip wireless silicon photonics: From reconfigurable interconnects to lab-on-chip devices. Light: Science & Applications. 6:e17053-e17053. https://doi.org/10.1038/lsa.2017.53e17053e170536Kirchain R, Kimerling R . A roadmap for nanophotonics. Nat Photonics 2007; 1: 303–305.Fan XD, White IM . Optofluidic microsystems for chemical and biological analysis. Nat Photonics 2011; 5: 591–597.Zhuang LM, Roeloffzen CGH, Meijerink A, Burla M, Marpaung DAI et al. Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—part II: experimental prototype. J Lightw Technol 2010; 28: 19–31.Yu NF, Capasso F . Flat optics with designer metasurfaces. Nat Mater 2014; 13: 139–150.Condrat C, Kalla P, Blair S . Crossing-aware channel routing for integrated optics. IEEE Trans Comput-Aided Design Integr Circuits Syst 2014; 33: 814–825.Lee BG, Rylyakov AV, Green WMJ, Assefa S, Baks CW et al. Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits. J Lightw Technol 2014; 32: 743–751.Robinson JP, Roederer M . Flow cytometry strikes gold. Science 2015; 350: 739–740.Mao XL, Nawaz AA, Lin SC, Lapsley MI, Zhao YH et al. An integrated, multiparametric flow cytometry chip using 'microfluidic drifting' based three-dimensional hydrodynamic focusing. Biomicrofluidics 2012; 6: 024113.Schurr JM . Dynamic light scattering of biopolymers and biocolloids. CRC Crit Rev Biochem 1977; 4: 371–431.Padgett M, Bowman R . Tweezers with a twist. Nat Photonics 2011; 5: 343–348.Haurylau M, Chen GQ, Chen H, Zhang JD, Nelson NA et al. On-chip optical interconnect roadmap: challenges and critical directions. IEEE J Select Top Quantum Electron 2006; 12: 1699–1705.Chan JN, Hendry G, Biberman A, Bergman K . Architectural exploration of chip-scale photonic interconnection network designs using physical-layer analysis. J Lightw Technol 2010; 28: 1305–1315.Vlasov Y, Green WMJ, Xia FN . High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. Nat Photonics 2008; 2: 242–246.Novotny L, van Hulst N . Antennas for light. Nat Photonics 2011; 5: 83–90.Fischer H, Martin OJF . Engineering the optical response of plasmonic nanoantennas. Opt Express 2008; 16: 9144–9154.Dregely D, Taubert R, Dorfmüller J, Vogelgesang R, Kern K et al. 3D optical Yagi-Uda nanoantenna array. Nat Commun 2011; 2: 267.Ni XJ, Emani NK, Kildishev AV, Boltasseva A, Shalaev VM . Broadband light bending with plasmonic nanoantennas. Science 2012; 335: 427.Koenderink AF, Alù A, Polman A . Nanophotonics: shrinking light-based technology. Science 2015; 348: 516–521.Polman A . Plasmonics applied. Science 2008; 322: 868–869.Brongersma ML, Shalaev VM . The case for plasmonics. Science 2010; 328: 440–441.Alù A, Engheta N . Wireless at the nanoscale: optical interconnects using matched nanoantennas. Phys Rev Lett 2010; 104: 213902.Solís DM, Taboada JM, Obelleiro F, Landesa L . Optimization of an optical wireless nanolink using directive nanoantennas. Opt Express 2013; 21: 2369–2377.Dregely D, Lindfors K, Lippitz M, Engheta N, Totzeck M et al. Imaging and steering an optical wireless nanoantenna link. Nat Commun 2014; 5: 4354.Curto AG, Volpe G, Taminiau TH, Kreuzer MP, Quidant R et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 2010; 329: 930–933.Sun J, Timurdogan E, Yaacobi A, Hosseini ES, Watts MR . Large-scale nanophotonic phased array. Nature 2013; 493: 195–199.Van Acoleyen K, Bogarets W, Jágerská J, Le Thomas N, Houdré R et al. Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator. Opt Lett 2009; 34: 1477–1479.Van Acoleyen K, Rogier H, Baets R . Two-dimensional optical phased array antenna on silicon-on-insulator. Opt Express 2010; 23: 13655–13660.Rodríguez-Fortuño FJ, Puerto D, Griol A, Bellieres L, Martí J et al. Sorting linearly polarized photons with a single scatterer. Opt Lett 2014; 39: 1394–1397.Krasnok AE, Miroshnichenko AE, Belov PA, Kivshar YS . All-dielectric optical nanoantennas. Opt Express 2012; 20: 20599–20604.Filonov DS, Krasnok AE, Slobozhanyuk AP, Kapitanova PV, Nenasheva EA et al. Experimental verification of the concept of all-dielectric nanoantennas. Appl Phys Lett 2012; 100: 201113.Cárdenas J, Poitras CB, Robinson JT, Preston K, Chen L et al. Low loss etchless silicon photonic waveguides. Opt Express 2009; 17: 4752–4757.Balanis CA . Antenna Theory: Analysis and Design. Wiley: New York; 1982.Kosako T, Kadoya Y, Hofmann HF . Directional control of light by a nano-optical Yagi-Uda antenna. Nat Photonics 2010; 4: 312–315.Subbaraman H, Xu XC, Hosseini A, Zhang XY, Zhang Y et al. Recent advances in silicon-based passive and active optical interconnects. Opt Express 2015; 23: 2487–2511.Della Corte FG, Esposito Montefusco M, Moretti L, Rendina I, Cocorullo G . Temperature dependence analysis of the thermo-optic effect in silicon by single and double oscillator models. J Appl Phys 2000; 88: 7115–7119.Chu T, Yamada H, Ishida S, Arakawa Y . Compact 1 × N thermo-optic switches based on silicon photonic wire waveguides. Opt Express 2005; 13: 10109–10114.Wang WJ, Zhao Y, Zhou HF, Hao YL, Yang JY et al. CMOS-compatible 1 × 3 silicon electrooptic switch with low crosstalk. IEEE Photon Technol Lett 2011; 23: 751–753.Cui KY, Zhao Q, Feng X, Liu F, Huang YD et al Ultra-compact and broadband 1 × 4 thermo-optic switch based on W2 photonic crystal waveguides. Proceedings of 2005 Opto-Electronics and Communications Conference; 28 June–2 July 2015; Shanghai, IEEE: Shanghai 2015.Lee BG, Dupuis N, Pepeljugoski P, Schares L, Budd R et al. Silicon photonic switch fabrics in computer communications systems. J Lightw Technol 2015; 33: 768–777.Song WW, Gatdula R, Abbaslou S, Lu M, Stein A et al. High-density waveguide superlattices with low crosstalk. Nat Commun 2015; 6: 7027.Melati D, Morichetti F, Gentili GG, Melloni A . Optical radiative crosstalk in integrated photonic waveguides. Opt Lett 2014; 39: 3982–3985.Zhang YS, Watts BR, Guo TY, Zhang ZY, Xu CQ et al. Optofluidic device based microflow cytometers for particle/cell detection: a review. Micromachines 2016; 7: 70.Kotz KT, Petrofsky AC, Haghgooie R, Granier R, Toner M et al. Inertial focusing cytometer with integrated optics for particle characterization. Technology (Singap World Sci) 2013; 1: 27–36.Hunt HC, Wilkinson JS . Multimode interference devices for focusing in microfluidic channels. Opt Lett 2011; 36: 3067–3069

    All-dielectric nanoantennas enabling on-chip wireless silicon photonics

    Full text link
    Tesis por compendio[ES] La revolución posibilitada por las aplicaciones fotónicas durante las últimas décadas ha dejado su impronta en la sociedad tal y como la conocemos actualmente. Ejemplos claros de este impacto están patentes en, por ejemplo, el enorme tráfico de datos generado por el uso de Internet o el empleo extendido de algunas técnicas biomédicas con fines diagnósticos o quirúrgicos, que no podrían entenderse sin el incesante desarrollo de los sistemas ópticos. La necesidad de combinar y miniaturizar estos sistemas para generar funcionalidades más avanzadas dio lugar al nacimiento de los circuitos fotónicos integrados (PICs), que es donde esta tesis comenzó a tomar forma. En este sentido, observamos limitaciones en términos de flexibilidad o reconfigurabilidad inherentes a la naturaleza guiada de la mayoría de los PICs realizados hasta el momento. En el caso de circuitos plasmónicos, observamos también limitaciones por las pérdidas que tienen las guías metálicas a altas frecuencias. La inclusión de estructuras inalámbricas (basadas principalmente en nanoantenas plasmónicas) en la capa fotónica surgió para mitigar estas pérdidas, abriendo también nuevas vías de investigación. Sin embargo, estos dispositivos aún presentaban rendimientos muy pobres como elementos puramente radiantes en el régimen de campo lejano. Para superar estas deficiencias, en este trabajo, introdujimos un enfoque novedoso en el desarrollo de dispositivos inalámbricos en la nanoescala, que dio forma a lo que llamamos on-chip wireless silicon photonics. Este nuevo concepto se apoyó en el uso de nanoantenas de silicio compatibles con procesos CMOS, que constituyen las estructuras clave que posibilitan un vasto catálogo de aplicaciones en redes fotónicas de comunicación o en sensores ultra-integrados, así como para la interconexión de sistemas dieléctricos-plasmónicos avanzados. En el ámbito de las comunicaciones, gracias a las sencillas reglas de diseño para adaptar la directividad de estas nanoantenas a diversas aplicaciones, pudimos demostrar por primera vez transmisiones inalámbricas de datos (mediante el uso de antenas altamente directivas) en redes on-chip reconfigurables o desarrollar dispositivos para generar a voluntad focos electromagnéticos de manera dinámica en espacios bidimensionales (gracias a antenas con una directividad más baja). Por otro lado, en el campo del biosensado, diseñamos y fabricamos un dispositivo lab-on-a-chip para la identificación de micropartículas, basado en el uso de antenas dieléctricas -presentando un rendimiento equiparable a los mejores diseños desarrollados hasta el momento- que incluye el subsistema óptico más compacto demostrado hasta la fecha. Finalmente, fuimos capaces de conectar experimentalmente y de manera eficiente antenas basadas en silicio con estructuras plasmónicas para el desarrollo de nuevas aplicaciones en la nanoescala, aunando las ventajas del on-chip wireles silicon photonics para comunicaciones en chip, conformación dinámica de haces o biosensado con las ventajas de la plasmónica para la manipulación e interacción con luz.[CA] La revolució habilitada per les aplicacions fotòniques durant les últimes dècades ha deixat la seua empremta en la societat actual tal com la coneixem. Exemples clars d'aquest impacte estan patents en, per exemple, l'enorme tràfic de dades generat per l'ús d'Internet o d'algunes tècniques biomèdiques amb fins diagnòstics o quirúrgics, que no es podrien entendre sense l'incessant desenvolupament dels sistemes òptics. La necessitat de combinar i miniaturitzar aquests sistemes per produir funcionalitats més avançades va donar lloc al naixement dels circuits fotònics integrats (PICs), que és on aquesta tesi va començar a prendre forma. En aquest sentit, observem limitacions en termes de flexibilitat o reconfigurabilitat inherents a la naturalesa guiada de la majoria dels PICs realitzats fins al moment. En el circuits plasmònics, tenim a mès les limitacions de les elevades pèrdues que les guies metàl·liques tenen a altes freqüències. La inclusió d'estructures sense fil (basades principalment en l'ús de nanoantenes plasmòniques) a la capa fotònica va sorgir per mitigar aquestes pèrdues, obrint també noves vies d'investigació. No obstant això, aquests dispositius encara presentaven rendiments molt pobres com a elements purament radiants en el règim de camp llunyà. Per superar aquestes deficiències, en aquest treball, vam introduir un enfocament innovador en el desenvolupament de dispositius sense fil a la nanoescala, que va donar forma al que anomenem on-chip wireless silicon photonics. Aquest nou concepte està basat en l'ús de nanoantenes de silici compatibles amb processos CMOS, que constitueixen les estructures clau que possibiliten un vast catàleg d'aplicacions en xarxes fotòniques de comunicació o en sensors ultra-integrats, així com per a la interconnexió de sistemes dieléctrics-plasmònics avançats. En l'àmbit de les comunicacions, gràcies a les senzilles regles de disseny per adaptar la directivitat de les antenes a les diverses aplicacions, vam poder demostrar per primera vegada transmissions de dades on-chip (mitjançant l'ús d'antenes altament directives) en xarxes reconfigurables o desenvolupar un dispositiu per generar a voluntat focus electromagnètics de manera dinàmica en espais bidimensionals (gràcies a antenes amb una directivitat més baixa). D'altra banda, en el camp del biosensing, vam dissenyar i fabricar un sensor lab-on-a-chip per a la classificació de micropartícules, basat en l'emprament d'antenes dielèctriques amb un rendiment a l'avantguarda dels millors dispositius de l'estat de l'art, que inclou el subsistema òptic més compacte demostrat fins al moment. Finalment, vam ser capaços de connectar experimentalment i de manera eficient antenes basades en silici amb estructures plasmònics per al desenvolupament de noves aplicacions en la nanoescala, unint els avantatges del on-chip wireless silicon photonics per a comunicacions en xip, conformació dinàmica de feixos o biosensat amb els avantatges de la plasmònica per a la manipulació e interacció amb llum.[EN] The revolution sparked by photonic applications during the last decades has made its mark in society, as we currently know it. Clear examples of this impact are patent in, for instance, the colossal worldwide data traffic generated by the use of the Internet or the widespread utilization of some biomedical techniques for diagnostic or surgical purposes, which could not be understood without the ceaseless development of optical systems. The necessity of combining and miniaturizing these systems to enable advanced functionalities gave birth to the development of photonic integrated circuits (PICs), which is the main framework within which this thesis began to take shape. Along these lines, we noticed restricted limitations in terms of flexibility or reconfigurability inherent to the wired-based nature of most PIC implementations carried out so far. In the case of plasmonic circuitry, there are additional shortcomings arising from the prohibitive losses of metallic waveguides at very high frequencies. The inclusion of wireless structures (mostly based on plasmonic nanoantennas) at the photonic layer emerged to mitigate these limiting losses, also opening new research avenues. However, these devices still presented poor performances as purely radiating elements in the far-field regime. In order to overcome these lacks, in this work, we introduced a novel version to wireless approaches at the nanoscale in what we called on-chip wireless silicon photonics. This new concept was built upon the use of CMOS-compatible silicon-based nanoantennas, which constitute the key enabling structures of a diverse catalogue of applications in photonic communication networks or ultra-integrated sensors as well as for interfacing advanced dielectric-plasmonic systems. In the scope of communications, thanks to the easiness to tailor the antenna directivity, we were able to experimentally demonstrate on-chip data transmission flows in reconfigurable networks for the first time (by using highly directive antennas) or to develop dynamically tailor-made interference patterns to create focused spots at will on a 2D arrangement (enabled by antennas with a lower directivity). On the other hand, in the field of biosensing, we experimentally implemented a dielectric antenna-based lab-on-a-chip device for microparticle classification with state-of-the-art performance, which included the most compact optical subsystem demonstrated so far. Finally, we were able to efficiently interface silicon-based antennas to plasmonic systems to develop new advanced functionalities at the nanoscale, by putting together the advantages of on-chip wireless silicon photonics for on-chip communications, beam-shaping tailoring or lab-on-a-chip sensing with the advantages of plasmonics for light concentration and manipulation.Lechago Buendía, S. (2019). All-dielectric nanoantennas enabling on-chip wireless silicon photonics [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/133074TESISCompendi

    Diseño y caracterización de nanoantenas plasmónicas y dieléctricas

    Full text link
    By means of this Project, a simulation and implementation of several types of optical nanoantennas was shown in order to establish on-chip optical wireless data transmissions. These nanolinks were fabricated on silicon wafers, using CMOS technology at the Nanophotonics technology center in the UPVEn este proyecto se recoge la simulación y síntesis de nanoantenas ópticas para establecer comunicaciones no guiadas entre dichas nanoantenas a nivel on-chip. Mediante estos nanoenlaces se consiguió transmitir datos en chips fabricados mediante tecnología CMOS en el centro de tecnología nanofotónica de la UPVLechago Buendia, S. (2014). Diseño y caracterización de nanoantenas plasmónicas y dieléctricas. http://hdl.handle.net/10251/37255.Archivo delegad
    corecore