140 research outputs found

    Unveiling the actual progress of Digital Building Permit: Getting awareness through a critical state of the art review

    Get PDF
    Growing interest is awarded to the digitalization of the building permitting use case and many works are developed about the topic. However, the subject is very complex and many aspects are usually tackled separately, making it very hard for traditional literature reviews to grasp the actual progress in the overall topic. This paper unveils the detailed state of the art in Digital Building Permitting (DBP) by critically analysing the literature by means of a set of coding tags (research progress, implementation, affected DBP workflow steps, ambitions addressed) assigned by a multidisciplinary team. The executed research shows that the mainly addressed aspects of the digitalization of building permit process are the technologies to check the compliance of design proposals against regulations, followed by the digitalization of regulations. Improvable aspects identified in the entire building permit system are instead e.g. the involvement of officers, scalability of solutions and interoperability of data, intended both as data validation and as integration of geospatial data with building models. © 2022 The Author

    Integrating expertises and ambitions for data-driven digital building permits - the EUNET4DBP

    Get PDF
    The digitalization of the process for building permit (involving the use of 3D information systems) is seen as a priority in a wide part of the world. Since it is a very multidisciplinary use case, involving a variety of stakeholders tackling complex issues and topics, some of them joined their efforts and skills in the European Network for Digital Building Permit. The initial activity of the network, after a review of on-going experiences, was a workshop to share knowledge about the topics involved and to identify the main ambitions of the network with respect to three pillars (i.e. Process - Rules and Requirements - Technology) and the related requirements. It was achieved through a collective brainstorming activity guided by digital tools, whose results were further analysed in a post-processing phase. Such results are presented in this paper and will be the base for planning the future network activity. © Authors 2020

    Unveiling the actual progress of Digital Building Permit: Getting awareness through a critical state of the art review

    Get PDF
    Growing interest is awarded to the digitalization of the building permitting use case and many works are developed about the topic. However, the subject is very complex and many aspects are usually tackled separately, making it very hard for traditional literature reviews to grasp the actual progress in the overall topic. This paper unveils the detailed state of the art in Digital Building Permitting (DBP) by critically analysing the literature by means of a set of coding tags (research progress, implementation, affected DBP workflow steps, ambitions addressed) assigned by a multidisciplinary team. The executed research shows that the mainly addressed aspects of the digitalization of building permit process are the technologies to check the compliance of design proposals against regulations, followed by the digitalization of regulations. Improvable aspects identified in the entire building permit system are instead e.g. the involvement of officers, scalability of solutions and interoperability of data, intended both as data validation and as integration of geospatial data with building models.Urban Data Scienc

    Probing the nature of the χc1(3872)\chi_{c1}(3872) state using radiative decays

    No full text
    International audienceThe radiative decays χc1(3872)→ψ(2S)Îł\chi_{c1}(3872)\rightarrow\psi(2S)\gamma and χc1(3872)→J/ÏˆÎł\chi_{c1}(3872)\rightarrow J/\psi\gamma are used to probe the~nature of the~χc1(3872)\chi_{c1}(3872) state using proton-proton collision data collected with the LHCb detector, corresponding to an~integrated luminosity of~9fb−1^{-1}. Using the~B+→χc1(3872)K+B^+\rightarrow \chi_{c1}(3872)K^+decay, the χc1(3872)→ψ(2S)Îł\chi_{c1}(3872)\rightarrow \psi(2S)\gamma process is observed for the first time and the ratio of its partial width to that of the χc1(3872)→J/ÏˆÎł\chi_{c1}(3872)\rightarrow J/\psi\gamma decay is measured to be Γχc1(3872)→ψ(2S)ÎłÎ“Ï‡c1(3872)→J/ÏˆÎł=1.67±0.21±0.12±0.04, \frac{\Gamma_{\chi_{c1}(3872)\rightarrow \psi(2S)\gamma}} {\Gamma_{\chi_{c1}(3872)\rightarrow J/\psi\gamma}} = 1.67 \pm 0.21 \pm 0.12 \pm0.04 , where the first uncertainty is statistical, the second systematic and the third is due to the uncertainties on the branching fractions of the ψ(2S)\psi(2S) and J/ψJ/\psi mesons. The measured ratio makes the interpretation of the χc1(3872)\chi_{c1}(3872) state as a~pure D0Dˉ∗0+Dˉ0D∗0D^0\bar{D}^{*0}+\bar{D}^0D^{*0} molecule questionable and strongly indicates a sizeable compact charmonium or tetraquark component within the χc1(3872)\chi_{c1}(3872) state

    Study of Bc+→χcπ+B_c^+ \rightarrow \chi_c \pi^+ decays

    No full text
    International audienceA study of Bc+→χcπ+B_c^+ \rightarrow \chi_c \pi^+ decays is reported using proton-proton collision data, collected with the LHCb detector at centre-of-mass energies of 7, 8, and 13 TeV, corresponding to an integrated luminosity of 9fb−1^{-1}. The decay Bc+→χc2π+B_c^+ \rightarrow \chi_{c2} \pi^+ is observed for the first time, with a significance exceeding seven standard deviations. The relative branching fraction with respect to the Bc+→J/ψπ+B_c^+ \rightarrow J/\psi \pi^+ decay is measured to be BBc+→χc2π+BBc+→J/ψπ+=0.37±0.06±0.02±0.01, \frac{\mathcal{B}_{B_c^+ \rightarrow \chi_{c2} \pi^+}} {\mathcal{B}_{B_c^+ \rightarrow J/\psi \pi^+}} = 0.37 \pm 0.06 \pm 0.02 \pm 0.01 , where the first uncertainty is statistical, the second is systematic, and the third is due to the knowledge of the χc→J/ÏˆÎł\chi_c \rightarrow J/\psi \gamma branching fraction. No significant Bc+→χc1π+B_c^+ \rightarrow \chi_{c1} \pi^+ signal is observed and an upper limit for the relative branching fraction for the Bc+→χc1π+B_c^+ \rightarrow \chi_{c1} \pi^+ and Bc+→χc2π+B_c^+ \rightarrow \chi_{c2} \pi^+ decays of BBc+→χc1π+BBc+→χc2π+<0.49 \frac{\mathcal{B}_{B_c^+ \rightarrow \chi_{c1} \pi^+}} {\mathcal{B}_{B_c^+ \rightarrow \chi_{c2} \pi^+}} < 0.49 is set at the 90% confidence level

    Tracking of charged particles with nanosecond lifetimes at LHCb

    No full text
    International audienceA method is presented to reconstruct charged particles with lifetimes between 10 ps and 10 ns, which considers a combination of their decay products and the partial tracks created by the initial charged particle. Using the Ξ−\Xi^- baryon as a benchmark, the method is demonstrated with simulated events and proton-proton collision data at s=13\sqrt{s}=13 TeV, corresponding to an integrated luminosity of 2.0 fb−1{}^{-1} collected with the LHCb detector in 2018. Significant improvements in the angular resolution and the signal purity are obtained. The method is implemented as part of the LHCb Run 3 event trigger in a set of requirements to select detached hyperons. This is the first demonstration of the applicability of this approach at the LHC, and the first to show its scaling with instantaneous luminosity

    First observation of Λb0→Σc(∗)++D(∗)−K−\Lambda_{b}^{0} \rightarrow \Sigma_c^{(*)++} D^{(*)-} K^{-} decays

    No full text
    International audienceThe four decays, Λb0→Σc(∗)++D(∗)−K−\Lambda_{b}^{0} \rightarrow \Sigma_c^{(*)++} D^{(*)-} K^{-}, are observed for the first time using proton-proton collision data collected with the LHCb detector at a centre-of-mass energy of 13 TeV13\,\rm{TeV}, corresponding to an integrated luminosity of 6 fb−16\,\rm{fb}^{-1}. By considering the Λb0→Λc+D‟0K−\Lambda_b^0 \rightarrow \Lambda_c^{+} \overline{D}^0 K^{-} decay as reference channel, the following branching fraction ratios are measured to be, B(Λb0→Σc++D−K−)B(Λb0→Λc+D‟0K−)=0.282±0.016±0.016±0.005,B(Λb0→Σc∗++D−K−)B(Λb0→Σc++D−K−)=0.460±0.052±0.028,B(Λb0→Σc++D∗−K−)B(Λb0→Σc++D−K−)=2.261±0.202±0.129±0.046,B(Λb0→Σc∗++D∗−K−)B(Λb0→Σc++D−K−)=0.896±0.137±0.066±0.018,\frac{\cal{B} (\Lambda_{b}^{0} \rightarrow \Sigma_{c}^{++} \rm{D}^{-} {K}^{-})}{\cal{B}(\Lambda_{b}^{0} \rightarrow \Lambda_c^{+} \rm \overline{D}^0 {K}^{-})} = {0.282}\pm{0.016}\pm{0.016}\pm{0.005}, \frac{\cal{B}(\Lambda_{b}^{0} \rightarrow \Sigma_{c}^{*++} \rm {D}^{-} {K}^{-})}{\cal{B}(\Lambda_{b}^{0} \rightarrow \Sigma_c^{++} \rm {D}^{-} {K}^{-})} = {0.460}\pm{0.052}\pm{0.028}, \frac{\cal{B}(\Lambda_{b}^{0} \rightarrow \Sigma_{c}^{++} \rm {D}^{*-} {K}^{-})}{\cal{B}(\Lambda_{b}^{0} \rightarrow \Sigma_c^{++} \rm {D}^{-} {K}^{-})} = {2.261}\pm{0.202}\pm{0.129}\pm{0.046}, \frac{\cal{B}(\Lambda_{b}^{0} \rightarrow \Sigma_{c}^{*++} \rm D^{*-} K^{-})}{\cal{B}(\Lambda_{b}^{0} \rightarrow \Sigma_c^{++} \rm D^{-} K^{-})} = {0.896}\pm{0.137}\pm{0.066}\pm{0.018}, where the first uncertainties are statistical, the second are systematic, and the third are due to uncertainties in the branching fractions of intermediate particle decays. These initial observations mark the beginning of pentaquark searches in these modes, with more data set to become available following the LHCb upgrade

    Search for the Bs0→Ό+ÎŒâˆ’ÎłB_s^0 \rightarrow \mu^+\mu^-\gamma decay

    No full text
    International audienceA search for the fully reconstructed Bs0→Ό+ÎŒâˆ’ÎłB_s^0 \rightarrow \mu^+\mu^-\gamma decay is performed at the LHCb experiment using proton-proton collisions at s=13\sqrt{s}=13 TeV corresponding to an integrated luminosity of 5.4 fb−15.4\,\mathrm{fb^{-1}}. No significant signal is found and upper limits on the branching fraction in intervals of the dimuon mass are set \begin{align} {\cal B}(B_s^0 \rightarrow \mu^+\mu^-\gamma) < 4.2\times10^{-8},~&m(\mu\mu)\in[2m_\mu,~1.70]\,\mathrm{GeV/c^2} ,\nonumber {\cal B}(B_s^0 \rightarrow \mu^+\mu^-\gamma) < 7.7\times10^{-8},~&m(\mu\mu)\in[1.70,~2.88]\,\mathrm{GeV/c^2},\nonumber {\cal B}(B_s^0 \rightarrow \mu^+\mu^-\gamma) < 4.2\times10^{-8},~&m(\mu\mu)\in[3.92 ,~m_{B_s^0}]\,\mathrm{GeV/c^2},\nonumber \end{align} at 95% confidence level. Additionally, upper limits are set on the branching fraction in the [2mÎŒ, 1.70] GeV/c2[2m_\mu,~1.70]\,\mathrm{GeV/c^2} dimuon mass region excluding the contribution from the intermediate ϕ(1020)\phi(1020) meson, and in the region combining all dimuon-mass intervals

    Study of Bc+→χcπ+B_c^+ \rightarrow \chi_c \pi^+ decays

    No full text
    International audienceA study of Bc+→χcπ+B_c^+ \rightarrow \chi_c \pi^+ decays is reported using proton-proton collision data, collected with the LHCb detector at centre-of-mass energies of 7, 8, and 13 TeV, corresponding to an integrated luminosity of 9fb−1^{-1}. The decay Bc+→χc2π+B_c^+ \rightarrow \chi_{c2} \pi^+ is observed for the first time, with a significance exceeding seven standard deviations. The relative branching fraction with respect to the Bc+→J/ψπ+B_c^+ \rightarrow J/\psi \pi^+ decay is measured to be BBc+→χc2π+BBc+→J/ψπ+=0.37±0.06±0.02±0.01, \frac{\mathcal{B}_{B_c^+ \rightarrow \chi_{c2} \pi^+}} {\mathcal{B}_{B_c^+ \rightarrow J/\psi \pi^+}} = 0.37 \pm 0.06 \pm 0.02 \pm 0.01 , where the first uncertainty is statistical, the second is systematic, and the third is due to the knowledge of the χc→J/ÏˆÎł\chi_c \rightarrow J/\psi \gamma branching fraction. No significant Bc+→χc1π+B_c^+ \rightarrow \chi_{c1} \pi^+ signal is observed and an upper limit for the relative branching fraction for the Bc+→χc1π+B_c^+ \rightarrow \chi_{c1} \pi^+ and Bc+→χc2π+B_c^+ \rightarrow \chi_{c2} \pi^+ decays of BBc+→χc1π+BBc+→χc2π+<0.49 \frac{\mathcal{B}_{B_c^+ \rightarrow \chi_{c1} \pi^+}} {\mathcal{B}_{B_c^+ \rightarrow \chi_{c2} \pi^+}} < 0.49 is set at the 90% confidence level

    First observation of Λb0→Σc(∗)++D(∗)−K−\Lambda_{b}^{0} \rightarrow \Sigma_c^{(*)++} D^{(*)-} K^{-} decays

    No full text
    International audienceThe four decays, Λb0→Σc(∗)++D(∗)−K−\Lambda_{b}^{0} \rightarrow \Sigma_c^{(*)++} D^{(*)-} K^{-}, are observed for the first time using proton-proton collision data collected with the LHCb detector at a centre-of-mass energy of 13 TeV13\,\rm{TeV}, corresponding to an integrated luminosity of 6 fb−16\,\rm{fb}^{-1}. By considering the Λb0→Λc+D‟0K−\Lambda_b^0 \rightarrow \Lambda_c^{+} \overline{D}^0 K^{-} decay as reference channel, the following branching fraction ratios are measured to be, B(Λb0→Σc++D−K−)B(Λb0→Λc+D‟0K−)=0.282±0.016±0.016±0.005,B(Λb0→Σc∗++D−K−)B(Λb0→Σc++D−K−)=0.460±0.052±0.028,B(Λb0→Σc++D∗−K−)B(Λb0→Σc++D−K−)=2.261±0.202±0.129±0.046,B(Λb0→Σc∗++D∗−K−)B(Λb0→Σc++D−K−)=0.896±0.137±0.066±0.018,\frac{\cal{B} (\Lambda_{b}^{0} \rightarrow \Sigma_{c}^{++} \rm{D}^{-} {K}^{-})}{\cal{B}(\Lambda_{b}^{0} \rightarrow \Lambda_c^{+} \rm \overline{D}^0 {K}^{-})} = {0.282}\pm{0.016}\pm{0.016}\pm{0.005}, \frac{\cal{B}(\Lambda_{b}^{0} \rightarrow \Sigma_{c}^{*++} \rm {D}^{-} {K}^{-})}{\cal{B}(\Lambda_{b}^{0} \rightarrow \Sigma_c^{++} \rm {D}^{-} {K}^{-})} = {0.460}\pm{0.052}\pm{0.028}, \frac{\cal{B}(\Lambda_{b}^{0} \rightarrow \Sigma_{c}^{++} \rm {D}^{*-} {K}^{-})}{\cal{B}(\Lambda_{b}^{0} \rightarrow \Sigma_c^{++} \rm {D}^{-} {K}^{-})} = {2.261}\pm{0.202}\pm{0.129}\pm{0.046}, \frac{\cal{B}(\Lambda_{b}^{0} \rightarrow \Sigma_{c}^{*++} \rm D^{*-} K^{-})}{\cal{B}(\Lambda_{b}^{0} \rightarrow \Sigma_c^{++} \rm D^{-} K^{-})} = {0.896}\pm{0.137}\pm{0.066}\pm{0.018}, where the first uncertainties are statistical, the second are systematic, and the third are due to uncertainties in the branching fractions of intermediate particle decays. These initial observations mark the beginning of pentaquark searches in these modes, with more data set to become available following the LHCb upgrade
    • 

    corecore