96 research outputs found
Patterning of metal oxide thin films using a H₂/He atmospheric pressure plasma jet
A hydrogen-doped helium atmospheric pressure plasma jet (APPJ) is shown to be effective for the chemical reduction of metal oxides. Copper and tin oxide films (CuO and SnO2) show rapid (<2 seconds) and complete reduction to zero valence metal after exposure to the plasma jet, as revealed by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, and Raman spectroscopy. After a total residence time of the plasma jet of 100 seconds, titanium oxide (TiO2) produced a surface decorated with Ti2+, Ti3+ and Ti4+ with proportions of 16, 38 and 46 atom%, respectively, as determined by XPS peak integration. Similarly, with tungsten oxide (WO3), after exposure for a few seconds, W5+ was produced, yielding a deep blue electrically conductive coating. The treatment of these oxide films by this dielectric radio frequency (RF) barrier discharge plasma jet provides a level of redox conversion not seen in any other technique, particularly for TiO2, especially with a comparable power input. The precise nature of the reduction is unclear; however, the involvement of free electrons may have an important role in the reduction process
Preparation and Structure of the Ion-Conducting Mixed Molecular Glass Ga2I3.17
Modern functional glasses have been prepared from a wide range of precursors, combining the benefits of their isotropic disordered structures with the innate functional behavior of their atomic or molecular building blocks. The enhanced ionic conductivity of glasses compared to their crystalline counterparts has attracted considerable interest for their use in solid-state batteries. In this study, we have prepared the mixed molecular glass Ga2I3.17 and investigated the correlations between the local structure, thermal properties, and ionic conductivity. The novel glass displays a glass transition at 60 °C, and its molecular make-up consists of GaI4– tetrahedra, Ga2I62– heteroethane ions, and Ga+ cations. Neutron diffraction was employed to characterize the local structure and coordination geometries within the glass. Raman spectroscopy revealed a strongly localized nonmolecular mode in glassy Ga2I3.17, coinciding with the observation of two relaxation mechanisms below Tg in the AC admittance spectra
Hydrogen sulfide protects renal grafts against prolonged cold ischemia-reperfusion injury via specific mitochondrial actions
This article has been accepted for publication and undergone full peer review but has not been
through the copyediting, typesetting, pagination and proofreading process, which may lead to
differences between this version and the Version of Record. Please cite this article as doi:
10.1111/ajt.14080
This article is protected by copyright. All rights reserved.Accepted manuscript online:
15 October 2016Ischemia-reperfusion injury (IRI) is unavoidably caused by loss and subsequent restoration of blood flow during organ procurement and prolonged IRI results in increased rates of delayed graft function and early graft loss. The endogenously produced gasotransmitter, hydrogen sulfide (H2 S), is a novel molecule that mitigates hypoxic tissue injury. The current study investigates the protective mitochondrial effects of H2 S during in vivo cold storage and subsequent renal transplantation (RTx) and in vitro cold hypoxic renal injury. Donor allografts from Brown Norway rats treated with University of Wisconsin (UW) solution + H2 S (150 μM NaSH) during prolonged (24-hour) cold (4°C) storage exhibited significantly (p1000-fold compared to similar levels of the non-specific H2 S donor, GYY4137 and also improved syngraft function and survival following prolonged cold storage compared to UW. H2 S treatment mitigates cold IRI-associated renal injury via mitochondrial actions and could represent a novel therapeutic strategy to minimize the detrimental clinical outcomes of prolonged cold IRI during RTx.This work was supported by grants from Physicians Services Incorporated and the Canadian
Urological Association (AS) and by a Frederick Banting and Charles Best Canada Graduate
Scholarships Doctoral Award from the Canadian Institutes of Health Research (IL). MW and
MEW would like to thank the Medical Research Council UK (MR/M022706/1) for their
generous research support. RT would like to acknowledge the Brian Ridge Scholarship for
support
GYY4137, a slow-releasing hydrogen sulfide donor, ameliorates renal damage associated with chronic obstructive uropathy.
PURPOSE: Chronic obstructive uropathy can cause irreversible kidney injury, atrophy, and inflammation, which can ultimately lead to fibrosis. Epithelial-mesenchymal transition (EMT) is a key trigger of fibrosis and is caused by upregulation of transforming growth factor beta 1 (TGF-β1) and angiotensin II (ANGII). Hydrogen sulfide (H2S) is an endogenously produced gasotransmitter with cytoprotective properties. The present study aims to elucidate the effects of the slow-releasing H2S donor GYY4137 on chronic ureteral obstruction and evaluate potential mechanisms. MATERIALS AND METHODS: Following unilateral ureteral obstruction (UUO), male Lewis rats were given daily intraperitoneal (IP) administration of phosphate buffered saline (PBS) vehicle (UUO group) or PBS+200μmol/kg GYY4137 (UUO+GYY4137 group) for 30 days. Urine and serum samples were collected to determine physiological parameters of renal function and injury. Kidneys were removed on post-operative day 30 for evaluation of histopathology and protein expression. EMT in pig kidney epithelial cells (LLC-PK1) was induced with TGF-β1 and treated with GYY4137 to evaluate potential mechanisms via in vitro scratch wound assays. RESULTS: H2S treatment decreased serum creatinine and urine protein/creatinine excretion ratio following UUO. In addition, H2S mitigated cortical loss, inflammatory damage, and tubulointerstitial fibrosis. Tissues exhibited decreased expression of EMT markers upon H2S treatment. EMT progression in LLC-PK1 was alleviated upon in vitro administration of GYY4137. CONCLUSIONS: Our findings demonstrate, for the first time, the protective effects of H2S in chronic obstructive uropathy and may represent a potential therapeutic solution to ameliorate renal damage and improve clinical outcomes of urinary obstruction.This work was supported by a grant from the Lawson Health Research Foundation
Protective effect of carboxymethyl-glucan (CM-G) against DNA damage in patients with advanced prostate cancer
Carboxymethyl-glucan (CM-G) is a soluble derivative from Saccharomyces cerevisiae (1 → 3)(1 → 6)-β-D-glucan. The protective efficiency of CM-G against DNA damage in cells from patients with advanced prostate cancer (PCa), and undergoing Androgen Deprivation Therapy (ADT), was evaluated. DNA damage scores were obtained by the comet assay, both before and after treatment with CM-G. The reduction in DNA damage, ranging from 18% to 87%, with an average of 59%, was not related to the increased number of leukocytes in peripheral blood. The results demonstrate for the first time the protective effect of CM-G against DNA damage in patients with advanced PCa. Among smokers, three presented the highest reduction in DNA damage after treatment with CM-G. There was no observable relationship between DNA damage scores before and after treatment, and age, alcoholism and radiotherapy
Cilostazol Inhibits Accumulation of Triglyceride in Aorta and Platelet Aggregation in Cholesterol-Fed Rabbits
Cilostazol is clinically used for the treatment of ischemic symptoms in patients with chronic peripheral arterial obstruction and for the secondary prevention of brain infarction. Recently, it has been reported that cilostazol has preventive effects on atherogenesis and decreased serum triglyceride in rodent models. There are, however, few reports on the evaluation of cilostazol using atherosclerotic rabbits, which have similar lipid metabolism to humans, and are used for investigating the lipid content in aorta and platelet aggregation under conditions of hyperlipidemia. Therefore, we evaluated the effect of cilostazol on the atherosclerosis and platelet aggregation in rabbits fed a normal diet or a cholesterol-containing diet supplemented with or without cilostazol. We evaluated the effects of cilostazol on the atherogenesis by measuring serum and aortic lipid content, and the lesion area after a 10-week treatment and the effect on platelet aggregation after 1- and 10-week treatment. From the lipid analyses, cilostazol significantly reduced the total cholesterol, triglyceride and phospholipids in serum, and moreover, the triglyceride content in the atherosclerotic aorta. Cilostazol significantly reduced the intimal atherosclerotic area. Platelet aggregation was enhanced in cholesterol-fed rabbits. Cilostazol significantly inhibited the platelet aggregation in rabbits fed both a normal diet and a high cholesterol diet. Cilostazol showed anti-atherosclerotic and anti-platelet effects in cholesterol-fed rabbits possibly due to the improvement of lipid metabolism and the attenuation of platelet activation. The results suggest that cilostazol is useful for prevention and treatment of atherothrombotic diseases with the lipid abnormalities
What Is New for an Old Molecule? Systematic Review and Recommendations on the Use of Resveratrol
Stilbenes are naturally occurring phytoalexins that generally exist as their more stable E isomers. The most well known natural stilbene is resveratrol (Res), firstly isolated in 1939 from roots of Veratrum grandiflorum (white hellebore) (1) and since then found in various edible plants, notably in Vitis vinifera L. (Vitaceae) (2). The therapeutic potential of Res covers a wide range of diseases, and multiple beneficial effects on human health such as antioxidant, anti-inflammatory and anti-cancer activities have been suggested based on several in vitro and animal studies (3). In particular, Res has been reported to be an inhibitor of carcinogenesis at multiple stages via its ability to inhibit cyclooxygenase, and is an anticancer agent with a role in antiangiogenesis (4). Moreover, both in vitro and in vivo studies showed that Res induces cell cycle arrest and apoptosis in tumor cells (4). However, clinical studies in humans evidenced that Res is rapidly absorbed after oral intake, and that the low level observed in the blood stream is caused by a fast conversion into metabolites that are readily excreted from the body (5). Thus, considerable efforts have gone in the design and synthesis of Res analogues with enhanced metabolic stability. Considering that reduced Res (dihydro- resveratrol, D-Res) conjugates may account for as much as 50% of an oral Res dose (5), and that D-Res has a strong proliferative effect on hormone-sensitive cancer cell lines such as breast cancer cell line MCF7 (6), we recently devoted our synthetic efforts to the preparation of trans-restricted analogues of Res in which the E carbon-carbon double bond is embedded into an imidazole nucleus. To keep the trans geometry, the two aryl rings were linked to the heteroaromatic core in a 1,3 fashion. Based on this design, we successfully prepared a variety of 1,4-, 2,4- and 2,5-diaryl substituted imidazoles including Res analogues 1, 2 and 3, respectively, by procedures that involve transition metal-catalyzed Suzuki-Miyaura cross-coupling reactions and highly selective N-H or C-H direct arylation reactions as key synthetic steps.
The anticancer activity of compounds 1–3 was evaluated against the 60 human cancer cell lines panel of the National Cancer Institute (NCI, USA). The obtained results, that will be showed and discussed along with the protocols developed for the preparation of imidazoles 1–3, confirmed that a structural optimization of Res may provide analogues with improved potency in inhibiting the growth of human cancer cell lines in vitro when compared to their natural lead.
(1) Takaoka,M.J.Chem.Soc.Jpn.1939,60,1090-1100.
(2) Langcake, P.; Pryce, R. J. Physiological. Plant Patology 1976, 9, 77-86.
(3) Vang, O.; et al. PLoS ONE 2011, 6, e19881. doi:10.1371/journal.pone.0019881
(4) Kraft, T. E.; et al. Critical Reviews in Food Science and Nutrition 2009, 49, 782-799.
(5) Walle, T. Ann. N.Y. Acad. Sci. 2011, 1215, 9-15. doi: 10.1111/j.1749-6632.2010.05842.x
(6) Gakh,A.A.;etal.Bioorg.Med.Chem.Lett.2010,20,6149-6151
- …