5 research outputs found

    Antibody correlates of protection against Delta infection after vaccination: A nested case-control within the UK-based SIREN study

    Get PDF
    Objectives: To investigate serological correlates of protection against SARS-CoV-2 B.1.617.2 (Delta) infection after two vaccinations.// Methods: We performed a case-control study, where cases were Delta infections after the second vaccine dose and controls were vaccinated, never infected participants, matched by age, gender and region. Sera were tested for anti-SARS-CoV-2 Spike antibody levels (anti-S) and neutralising antibody titres (nAbT), using live virus microneutralisation against Ancestral, Delta and Omicron (BA.1, B.1.1.529). We modelled the decay of anti-S and nAbT for both groups, inferring levels at matched calendar times since the second vaccination. We assessed differences in inferred antibody titres between groups and used conditional logistic regression to explore the relationship between titres and odds of infection.// Results: In total, 130 sequence-confirmed Delta cases and 318 controls were included. Anti-S and Ancestral nAbT decayed similarly between groups, but faster in cases for Delta nAbT (p = 0.02) and Omicron nAbT (p = 0.002). At seven days before infection, controls had higher anti-S levels (p 40 were associated with reduced odds of Delta infection (89%, [69–96%]; p 100 (p = 0.009) and >400 (p = 0.007).// Conclusions: We have identified correlates of protection against SARS-CoV-2 Delta, with potential implications for vaccine deployment, development, and public health response

    Antibody correlates of protection from SARS-CoV-2 reinfection prior to vaccination : a nested case-control within the SIREN study

    Get PDF
    Funding: This study was supported by the U.K. Health Security Agency, the U.K. Department of Health and Social Care (with contributions from the governments in Northern Ireland, Wales, and Scotland), the National Institute for Health Research, and grant from the UK Medical Research Council (grant number MR/W02067X/1). This work was supported by the Francis Crick Institute which receives its core funding from Cancer Research UK (CC2087, CC1283), the UK Medical Research Council (CC2087, CC1283), and the Wellcome Trust (CC2087, CC1283).Objectives To investigate serological differences between SARS-CoV-2 reinfection cases and contemporary controls, to identify antibody correlates of protection against reinfection. Methods We performed a case-control study, comparing reinfection cases with singly infected individuals pre-vaccination, matched by gender, age, region and timing of first infection. Serum samples were tested for anti-SARS-CoV-2 spike (anti-S), anti-SARS-CoV-2 nucleocapsid (anti-N), live virus microneutralisation (LV-N) and pseudovirus microneutralisation (PV-N). Results were analysed using fixed effect linear regression and fitted into conditional logistic regression models. Results We identified 23 cases and 92 controls. First infections occurred before November 2020; reinfections occurred before February 2021, pre-vaccination. Anti-S levels, LV-N and PV-N titres were significantly lower among cases; no difference was found for anti-N levels. Increasing anti-S levels were associated with reduced risk of reinfection (OR 0·63, CI 0·47-0·85), but no association for anti-N levels (OR 0·88, CI 0·73-1·05). Titres >40 were correlated with protection against reinfection for LV-N Wuhan (OR 0·02, CI 0·001–0·31) and LV-N Alpha (OR 0·07, CI 0·009–0·62). For PV-N, titres >100 were associated with protection against Wuhan (OR 0·14, CI 0·03–0·64) and Alpha (0·06, CI 0·008–0·40). Conclusions Before vaccination, protection against SARS-CoV-2 reinfection was directly correlated with anti-S levels, PV-N and LV-N titres, but not with anti-N levels. Detectable LV-N titres were sufficient for protection, whilst PV-N titres >100 were required for a protective effect. Trial registration number ISRCTN11041050Publisher PDFPeer reviewe

    Antibody correlates of protection from SARS-CoV-2 reinfection prior to vaccination: A nested case-control within the SIREN study.

    Get PDF
    Funder: Medical Research CouncilFunder: National Institute for Health Research (NIHR)Funder: Wellcome TrustFunder: UK Health Security AgencyFunder: Cancer Research UKOBJECTIVES: To investigate serological differences between SARS-CoV-2 reinfection cases and contemporary controls, to identify antibody correlates of protection against reinfection. METHODS: We performed a case-control study, comparing reinfection cases with singly infected individuals pre-vaccination, matched by gender, age, region and timing of first infection. Serum samples were tested for anti-SARS-CoV-2 spike (anti-S), anti-SARS-CoV-2 nucleocapsid (anti-N), live virus microneutralisation (LV-N) and pseudovirus microneutralisation (PV-N). Results were analysed using fixed effect linear regression and fitted into conditional logistic regression models. RESULTS: We identified 23 cases and 92 controls. First infections occurred before November 2020; reinfections occurred before February 2021, pre-vaccination. Anti-S levels, LV-N and PV-N titres were significantly lower among cases; no difference was found for anti-N levels. Increasing anti-S levels were associated with reduced risk of reinfection (OR 0·63, CI 0·47-0·85), but no association for anti-N levels (OR 0·88, CI 0·73-1·05). Titres >40 were correlated with protection against reinfection for LV-N Wuhan (OR 0·02, CI 0·001-0·31) and LV-N Alpha (OR 0·07, CI 0·009-0·62). For PV-N, titres >100 were associated with protection against Wuhan (OR 0·14, CI 0·03-0·64) and Alpha (0·06, CI 0·008-0·40). CONCLUSIONS: Before vaccination, protection against SARS-CoV-2 reinfection was directly correlated with anti-S levels, PV-N and LV-N titres, but not with anti-N levels. Detectable LV-N titres were sufficient for protection, whilst PV-N titres >100 were required for a protective effect. TRIAL REGISTRATION NUMBER: ISRCTN11041050

    Roosevelt Island Climate Evolution (RICE) ice core isotope record

    No full text
    High-resolution, well-dated climate archives provide an opportunity to investigate the dynamic interactions of climate patterns relevant for future projections. Here, we present data from a new, annually-dated ice core record from the eastern Ross Sea. Comparison of the Roosevelt Island Climate Evolution (RICE) ice core records with climate reanalysis data for the 1979-2012 calibration period shows that RICE records reliably capture temperature and snow precipitation variability of the region. RICE is compared with data from West Antarctica (West Antarctic Ice Sheet Divide Ice Core) and the western (Talos Dome) and eastern (Siple Dome) Ross Sea. For most of the past 2,700 years, the eastern Ross Sea was warming with perhaps increased snow accumulation and decreased sea ice extent. However, West Antarctica cooled whereas the western Ross Sea showed no significant temperature trend. From the 17th Century onwards, this relationship changes. All three regions now show signs of warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea, but increasing in the western Ross Sea. Analysis of decadal to centennial-scale climate variability superimposed on the longer term trend reveal that periods characterised by opposing temperature trends between the Eastern and Western Ross Sea have occurred since the 3rd Century but are masked by longer-term trends. This pattern here is referred to as the Ross Sea Dipole, caused by a sensitive response of the region to dynamic interactions of the Southern Annual Mode and tropical forcings

    Speech Communication

    No full text
    Contains table of contents for Part V, table of contents for Section 1, reports on six research projects and a list of publications.C.J. Lebel FellowshipDennis Klatt Memorial FundNational Institutes of Health Grant F32-DC00194National Institutes of Health Grant F32-DC00205National Institutes of Health Grant P01-DC00361National Institutes of Health Grant R01-DC00075National Institutes of Health Grant R01-DC00261National Institutes of Health Grant R01-DC00266National Institutes of Health Grant R01-DC01291National Institutes of Health Grant R01-DC01925National Institutes of Health Grant R03-DC01721National Institutes of Health Grant R29 DC02525National Institutes of Health Grant T32-DC00038National Science Foundation Grant INT 94-21146National Science Foundation Grant IRI 89-0543
    corecore