54 research outputs found

    Nuclear factor erythroid-2-related factor 2 signaling in the neuropathophysiology of inherited metabolic disorders

    Get PDF
    Inherited metabolic disorders (IMDs) are rare genetic conditions that affect multiple organs, predominantly the central nervous system. Since treatment for a large number of IMDs is limited, there is an urgent need to find novel therapeutical targets. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a transcription factor that has a key role in controlling the intracellular redox environment by regulating the expression of antioxidant enzymes and several important genes related to redox homeostasis. Considering that oxidative stress along with antioxidant system alterations is a mechanism involved in the neuropathophysiology of many IMDs, this review focuses on the current knowledge about Nrf2 signaling dysregulation observed in this group of disorders characterized by neurological dysfunction. We review here Nrf2 signaling alterations observed in X-linked adrenoleukodystrophy, glutaric acidemia type I, hyperhomocysteinemia, and Friedreich’s ataxia. Additionally, beneficial effects of different Nrf2 activators are shown, identifying a promising target for treatment of patients with these disorders. We expect that this article stimulates research into the investigation of Nrf2 pathway involvement in IMDs and the use of potential pharmacological modulators of this transcription factor to counteract oxidative stress and exert neuroprotection

    Increased susceptibility to quinolinic acid-induced seizures and long-term changes in brain oscillations in an animal model of glutaric acidemia type I

    Get PDF
    Glutaric acidemia type I (GA-I) is an inborn error of metabolism of lysine, hydroxylysine, and tryptophan, caused by glutaryl-CoA-dehydrogenase (GCDH) deficiency, characterized by the buildup of toxic organic acids predominantly in the brain. After acute catabolic states, patients usually develop striatal degeneration, but the mechanisms behind this damage are still unknown. Quinolinic acid (QA), a metabolite of the kynurenine pathway, increases especially during infections/inflammatory processes, and could act synergically with organic acids, contributing to the neurological features of GA-I. The aim of this study was to investigate whether QA increases seizure susceptibility and modifies brain oscillation patterns in an animal model of GA-I, the Gcdh−/− mice taking high-lysine diet (Gcdh−/−-Lys). Therefore, the characteristics of QA-induced seizures and changes in brain oscillatory patterns were evaluated by video-electroencephalography (EEG) analysis recorded in Gcdh−/−-Lys, Gcdh+/+-Lys, and Gcdh−/−-N (normal diet) animals. We found that the number of seizures per animal was similar for all groups receiving QA, Gcdh−/−-Lys-QA, Gcdh+/+-Lys-QA, and Gcdh−/−-N-QA. However, severe seizures were observed in the majority of Gcdh−/−-Lys-QA mice (82%), and only in 25% of Gcdh+/+-Lys-QA and 44% of Gcdh−/−-N-QA mice. All Gcdh−/−-Lys animals developed spontaneous recurrent seizures (SRS), but Gcdh−/−-Lys-QA animals had increased number of SRS, higher mortality rate, and significant predominance of lower frequency oscillations on EEG. Our results suggest that QA plays an important role in the neurological features of GA-I, as Gcdh−/−-Lys mice exhibit increased susceptibility to intrastriatal QA-induced seizures and long-term changes in brain oscillations

    ETHE1 and MOCS1 deficiencies : disruption of mitochondrial bioenergetics, dynamics, redox homeostasis and endoplasmic reticulum-mitochondria crosstalk in patient fibroblasts

    Get PDF
    Ethylmalonic encephalopathy protein 1 (ETHE1) and molybdenum cofactor (MoCo) defciencies are hereditary disorders that afect the catabolism of sulfur-containing amino acids. ETHE1 defciency is caused by mutations in the ETHE1 gene, while MoCo defciency is due to mutations in one of three genes involved in MoCo biosynthesis (MOCS1, MOCS2 and GPHN). Patients with both disorders exhibit abnormalities of the mitochondrial respiratory chain, among other biochemical fndings. However, the pathophysiology of the defects has not been elucidated. To characterize cellular derangements, mitochondrial bioenergetics, dynamics, endoplasmic reticulum (ER)-mitochondria communication, superoxide production and apoptosis were evaluated in fbroblasts from four patients with ETHE1 defciency and one with MOCS1 defciency. The efect of JP4-039, a promising mitochondrial-targeted antioxidant, was also tested on cells. Our data show that mitochondrial respiration was decreased in all patient cell lines. ATP depletion and increased mitochondrial mass was identifed in the same cells, while variable alterations in mitochondrial fusion and fssion were seen. High superoxide levels were found in all cells and were decreased by treatment with JP4-039, while the respiratory chain activity was increased by this antioxidant in cells in which it was impaired. The content of VDAC1 and IP3R, proteins involved in ER-mitochondria communication, was decreased, while DDIT3, a marker of ER stress, and apoptosis were increased in all cell lines. These data demonstrate that previously unrecognized broad disturbances of cellular function are involved in the pathophysiology of ETHE1 and MOCS1 defciencies, and that reduction of mitochondrial superoxide by JP4-039 is a promising strategy for adjuvant therapy of these disorders

    Pristanic acid promotes oxidative stress in brain cortex of young rats: A possible pathophysiological mechanism for brain damage in peroxisomal disorders

    Get PDF
    AbstractPristanic acid (Prist) is accumulated in various peroxisomal disorders characterized by severe neurological dysfunction whose pathogenesis is poorly understood. Since oxidative damage has been demonstrated in brain of patients affected by neurodegenerative disorders, in the present work we investigated the in vitro effects of Prist on important parameters of oxidative stress in cerebral cortex from young rats. Prist significantly increased malondialdehyde levels, reflecting an increase of lipid peroxidation. This effect was totally prevented by the free radical scavenger melatonin, suggesting the involvement of reactive species. Prist also provoked protein oxidative damage, as determined by increased carbonyl formation and sulfhydryl oxidation. Otherwise, it did not alter nitric oxide production, indicating that nitrogen reactive species were not implicated in the lipid and oxidative damage provoked by Prist. Furthermore, the concentration of glutathione (GSH), the major brain non-enzymatic antioxidant defense, was significantly decreased by Prist and this decrease was fully prevented by melatonin and attenuated by α-tocopherol. It is therefore presumed that Prist elicits oxidative stress in the brain probably via reactive oxygen species formation and that this pathomechanism may possibly be involved in the brain damage found in patients affected by peroxisomal disorders where Prist accumulates

    Myelin disruption, neuroinflammation, and oxidative stress induced by sulfite in the striatum of rats are mitigated by the pan-PPAR agonist bezafibrate

    Get PDF
    Sulfite predominantly accumulates in the brain of patients with isolated sulfite oxidase (ISOD) and molybdenum cofactor (MoCD) deficiencies. Patients present with severe neurological symptoms and basal ganglia alterations, the pathophysiology of which is not fully established. Therapies are ineffective. To elucidate the pathomechanisms of ISOD and MoCD, we investigated the effects of intrastriatal administration of sulfite on myelin structure, neuroinflammation, and oxidative stress in rat striatum. Sulfite administration decreased FluoromyelinTM and myelin basic protein staining, suggesting myelin abnormalities. Sulfite also increased the staining of NG2, a protein marker of oligodendrocyte progenitor cells. In line with this, sulfite also reduced the viability of MO3.13 cells, which express oligodendroglial markers. Furthermore, sulfite altered the expression of interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-10 (IL-10), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and heme oxygenase-1 (HO-1), indicating neuroinflammation and redox homeostasis disturbances. Iba1 staining, another marker of neuroinflammation, was also increased by sulfite. These data suggest that myelin changes and neuroinflammation induced by sulfite contribute to the pathophysiology of ISOD and MoCD. Notably, post-treatment with bezafibrate (BEZ), a pan-PPAR agonist, mitigated alterations in myelin markers and Iba1 staining, and IL-1β, IL-6, iNOS and HO-1 expression in the striatum. MO3.13 cell viability decrease was further prevented. Moreover, pretreatment with BEZ also attenuated some effects. These findings show the modulation of PPAR as a potential opportunity for therapeutic intervention in these disorders

    Efeitos da administração intraestriatal de lisina sobre parâmetros de estresse oxidativo e metabolismo energético em estriado de ratos jovens

    Get PDF
    A lisina (Lis) é degradada principalmente na mitocôndria através das atividades lisina-cetoglutarato redutase e sacaropina desidrogenase da enzima bifuncional α-aminoadípico semialdeído sintase (SAS). A transaminação do grupo amino ao α-cetoglutarato produz o intermediário sacaropina que é posteriormente convertida a acetil-CoA, entrando no ciclo do ácido cítrico. A Lis também pode ser degradada por uma via alternativa nos peroxissomos, liberando ácido pipecólico. O acúmulo de Lis em tecidos e líquidos biológicos é o principal achado bioquímico de pacientes acometidos pela hiperlisinemia familiar (HF) e por outras doenças metabólicas caracterizadas clinicamente por disfunção neurológica com retardo mental de grau variável. Estudos recentes mostraram que a Lis induz estresse oxidativo e disfunção energética in vitro em córtex cerebral de ratos, indicando uma ação neurotóxica para esse aminoácido. O objetivo do presente estudo foi investigar se os efeitos invitro da Lis poderiam ser reproduzidos in vivo. Assim, estudou-se os efeitos da administração intraestritatal aguda de Lis (4 μmol) sobre parâmetros de metabolismo energético e estresse oxidativo em estriado de ratos jovens. Em alguns experimentos, os animais foram pré-tratados intraperitonialmente com melatonina, combinação de α-tocoferol e ácido ascórbico, creatina ou Nacetilcisteína por 3 dias, com uma única injeção diária, seguida da injeção intraestriatal de Lis. Animais controle receberam o mesmo volume de uma solução salina. Os ratos foram sacrificados por decapitação sem anestesia 30 min, 2 ou 12 h após a injeção intraestriatal de Lis ou NaCl e o estriado foi dissecado e homogeneizado. Os resultados mostram que a injeção in vivo de Lis não alterou a função do ciclo do ácido cítrico (produção de 14CO2 a partir de [1-14C]acetato) e a atividade da creatina quinase. Em contraste, o aminoácido inibiu significativamente a atividade da Na+,K+-ATPase em estriado 2 e 12 h após a injeção. Além disso, a Lis induziu lipoperoxidação, determinada pelo aumento significativo dos níveis das substâncias reativas ao ácido-tiobarbitúrico (TBA-RS), e diminuiu as concentrações de glutationa reduzida (GSH) 30 min e 2 h após a injeção. Os antioxidantes melatonina e a combinação de α-tocoferol e ácido ascórbico preveniram esses efeitos. Também verificamos que a Lis inibiu a atividade da glutationa peroxidase 12 h após a injeção, sem alterar as atividades das enzimas catalase, superóxido dismutase e glicose-6-fosfato desidrogenase. Considerando que a redução da atividade da Na+,K+-ATPase e o dano oxidativo estão associados a neurodegeneração, pode-se presumir que esses efeitos deletérios causados pela Lis possam estar relacionados às manifestações neurológicas encontradas em pacientes portadores de doenças caracterizadas pelo acúmulo desse aminoácido.Lysine (Lys) is mainly degraded in the mitochondria through lysine-ketoglutarate reductase and saccharopine dehydrogenase activities of the bifunctional enzyme α-aminoadipic semialdehyde synthase (SAS). The transamination of the amino group to α-ketoglutarate leads to the formation of saccharopine, which is converted to acetyl-CoA and enters the citric acid cycle. Lys can be also degraded by an alternative pathway in the peroxisomes to release pipecolic acid. Lys accumulation in tissues and biological fluids is the biochemical hallmark of patients affected by familial hyperlysinemia (FH) and other inherited metabolic disorders. Recent studies have shown that Lys induces oxidative stress and energy dysfunction in vitro in rat cerebral cortex, suggesting that Lys may be neurotoxic. Therefore, the present study investigated the effects of acute intrastriatal administration of Lys on parameters of energy metabolism and oxidative stress in striatum of young rats. In some experiments, animals were pre-treated intraperitoneally with melatonin, the combination of α-tocopherol and ascorbic acid or creatine for 3 days, one injection per day, after which the animals received the intrastriatal injection of Lys. Control animals received the same volumes of saline solution. Animals were sacrificed by decapitation without anesthesia 30 min, 2 or 12 h after intrastriatal injection of either Lys or NaCl and the striatum was dissected and homogenized. We verified that Lys in vivo injection did not change the citric acid cycle function (14CO2 production from [1-14C]acetate) and creatine kinase activity. In contrast, the amino acid significantly inhibited Na+,K+-ATPase activity in striatum prepared 2 and 12 h after injection. Moreover, Lys induced lipid peroxidation, as detected by a significant increase of thiobarbituric acid-reactive substances (TBA-RS), and diminished the concentrations of reduced glutathione (GSH) 30 min and 2 h after injection. The antioxidants melatonin and the combination of α- tocopherol and ascorbic acid prevented these effects. We also verified that Lys inhibited glutathione peroxidase activity 12 h after injection, without altering the activities of superoxide dismutase, catalase and glucose-6-phosfate dehydrogenase. Considering that reduction of Na+,K+-ATPase activity and oxidative damage are associated with neurodegeneration, it is tempting to speculate that high concentrations of Lys may possibly underlie the neurological manifestations in diseases characterized by high tissue accumulation of this amino acid
    corecore