304 research outputs found

    theta-Defensins: Cyclic Peptides with Endless Potential

    Get PDF
    theta-Defensins, the only cyclic peptides of animal origin, have been isolated from the leukocytes of rhesus macaques and baboons. Their biogenesis is unusual because each peptide is an 18-residue chimera formed by the head-to-tail splicing of nonapeptides derived from two separate precursors. theta-Defensins have multiple arginines and a ladder-like tridisulfide array spanning their two antiparallel beta-strands. Human theta-defensin genes contain a premature stop codon that prevents effective translation of the needed precursors; consequently, these peptides are not present in human leukocytes. Synthetic theta-defensins with sequences that correspond to those encoded within the human pseudogenes are called retrocyclins. Retrocyclin-1 inhibits the cellular entry of HIV-1, HSV, and influenza A virus. The rhesus theta-defensin RTD-1 protects mice from an experimental severe acute respiratory syndrome coronavirus infection, and retrocyclin- 1 protects mice from infection by Bacillus anthracis spores. The small size, unique structure, and multiple host defense activities of theta-defensins make them intriguing potential therapeutic agents

    A theoretical approach to spot active regions in antimicrobial proteins

    Get PDF
    Background: Much effort goes into identifying new antimicrobial compounds able to evade the increasing resistance of microorganisms to antibiotics. One strategy relies on antimicrobial peptides, either derived from fragments released by proteolytic cleavage of proteins or designed from known antimicrobial protein regions. Results: To identify these antimicrobial determinants, we developed a theoretical approach that predicts antimicrobial proteins from their amino acid sequence in addition to determining their antimicrobial regions. A bactericidal propensity index has been calculated for each amino acid, using the experimental data reported from a high-throughput screening assay as reference. Scanning profiles were performed for protein sequences and potentially active stretches were identified by the best selected threshold parameters. The method was corroborated against positive and negative datasets. This successful approach means that we can spot active sequences previously reported in the literature from experimental data for most of the antimicrobial proteins examined. Conclusion: The method presented can correctly identify antimicrobial proteins with an accuracy of 85% and a sensitivity of 90%. The method can also predict their key active regions, making this a tool for the design of new antimicrobial drugs

    Functional characterization of two defensin isoforms of the hard tick Ixodes ricinus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The immune system of ticks is stimulated to produce many pharmacologically active molecules during feeding and especially during pathogen invasion. The family of cationic peptides - defensins - represents a specific group of antimicrobial compounds with six conserved cysteine residues in a molecule.</p> <p>Results</p> <p>Two isoforms of the defensin gene <it>(def1 </it>and <it>def2</it>) were identified in the European tick <it>Ixodes ricinus</it>. Expression of both genes was induced in different tick organs by a blood feeding or pathogen injection. We have tested the ability of synthetic peptides def1 and def2 to inhibit the growth or directly kill several pathogens. The antimicrobial activities (expressed as minimal inhibition concentration and minimal bactericidal concentration values) against Gram positive bacteria were confirmed, while Gram negative bacteria, yeast, Tick Borne Encephalitis and West Nile Viruses were shown to be insensitive. In addition to antimicrobial activities, the hemolysis effect of def1 and def2 on human erythrocytes was also established.</p> <p>Conclusions</p> <p>Although there is nothing known about the realistic concentration of defensins in <it>I. ricinus </it>tick body, these results suggest that defensins play an important role in defence against different pathogens. Moreover this is a first report of a one amino acid substitution in a defensins molecule and its impact on antimicrobial activity.</p

    RNase 7 Contributes to the Cutaneous Defense against Enterococcus faecium

    Get PDF
    Background: Human skin is able to mount a fast response against invading microorganisms by the release of antimicrobial proteins such as the ribonuclease RNase 7. Because RNase 7 exhibits high activity against Enterococcus faecium the aim of this study was to further explore the role of RNase 7 in the cutaneous innate defense system against E. faecium. Methodology/Principal Findings: Absolute quantification using real-time PCR and ELISA revealed that primary keratinocytes expressed high levels of RNase 7. Immunohistochemistry showed RNase 7 expression in all epidermal layers of the skin with an intensification in the upper more differentiated layers. Furthermore, RNase 7 was secreted by keratinocytes in vitro and in vivo in a site-dependent way. RNase 7 was still active against E. faecium at low pH (5.5) or high NaCl (150 mM) concentration and the bactericidal activity of RNase 7 against E. faecium required no ribonuclease activity as shown by recombinant RNase 7 lacking enzymatic activity. To further explore the role of RNase 7 in cutaneous defense against E. faecium, we investigated whether RNase 7 contributes to the E. faecium killing activity of skin extracts derived from stratum corneum. Treatment of the skin extract with an RNase 7 specific antibody, which neutralizes the antimicrobial activity of RNase 7, diminished its E. faecium killing activity. Conclusions/Significance: Our data indicate that RNase 7 contributes to the E. faecium-killing activity of skin extracts an

    Sap Transporter Mediated Import and Subsequent Degradation of Antimicrobial Peptides in Haemophilus

    Get PDF
    Antimicrobial peptides (AMPs) contribute to host innate immune defense and are a critical component to control bacterial infection. Nontypeable Haemophilus influenzae (NTHI) is a commensal inhabitant of the human nasopharyngeal mucosa, yet is commonly associated with opportunistic infections of the upper and lower respiratory tracts. An important aspect of NTHI virulence is the ability to avert bactericidal effects of host-derived antimicrobial peptides (AMPs). The Sap (sensitivity to antimicrobial peptides) ABC transporter equips NTHI to resist AMPs, although the mechanism of this resistance has remained undefined. We previously determined that the periplasmic binding protein SapA bound AMPs and was required for NTHI virulence in vivo. We now demonstrate, by antibody-mediated neutralization of AMP in vivo, that SapA functions to directly counter AMP lethality during NTHI infection. We hypothesized that SapA would deliver AMPs to the Sap inner membrane complex for transport into the bacterial cytoplasm. We observed that AMPs localize to the bacterial cytoplasm of the parental NTHI strain and were susceptible to cytoplasmic peptidase activity. In striking contrast, AMPs accumulated in the periplasm of bacteria lacking a functional Sap permease complex. These data support a mechanism of Sap mediated import of AMPs, a novel strategy to reduce periplasmic and inner membrane accumulation of these host defense peptides

    Epithelial antimicrobial peptides in host defense against infection

    Get PDF
    One component of host defense at mucosal surfaces seems to be epithelium-derived antimicrobial peptides. Antimicrobial peptides are classified on the basis of their structure and amino acid motifs. Peptides of the defensin, cathelicidin, and histatin classes are found in humans. In the airways, α-defensins and the cathelicidin LL-37/hCAP-18 originate from neutrophils. β-Defensins and LL-37/hCAP-18 are produced by the respiratory epithelium and the alveolar macrophage and secreted into the airway surface fluid. Beside their direct antimicrobial function, antimicrobial peptides have multiple roles as mediators of inflammation with effects on epithelial and inflammatory cells, influencing such diverse processes as proliferation, immune induction, wound healing, cytokine release, chemotaxis, protease-antiprotease balance, and redox homeostasis. Further, antimicrobial peptides qualify as prototypes of innovative drugs that might be used as antibiotics, anti-lipopolysaccharide drugs, or modifiers of inflammation

    Insight into the Mechanisms of Adenovirus Capsid Disassembly from Studies of Defensin Neutralization

    Get PDF
    Defensins are effectors of the innate immune response with potent antibacterial activity. Their role in antiviral immunity, particularly for non-enveloped viruses, is poorly understood. We recently found that human alpha-defensins inhibit human adenovirus (HAdV) by preventing virus uncoating and release of the endosomalytic protein VI during cell entry. Consequently, AdV remains trapped in the endosomal/lysosomal pathway rather than trafficking to the nucleus. To gain insight into the mechanism of defensin-mediated neutralization, we analyzed the specificity of the AdV-defensin interaction. Sensitivity to alpha-defensin neutralization is a common feature of HAdV species A, B1, B2, C, and E, whereas species D and F are resistant. Thousands of defensin molecules bind with low micromolar affinity to a sensitive serotype, but only a low level of binding is observed to resistant serotypes. Neutralization is dependent upon a correctly folded defensin molecule, suggesting that specific molecular interactions occur with the virion. CryoEM structural studies and protein sequence analysis led to a hypothesis that neutralization determinants are located in a region spanning the fiber and penton base proteins. This model was supported by infectivity studies using virus chimeras comprised of capsid proteins from sensitive and resistant serotypes. These findings suggest a mechanism in which defensin binding to critical sites on the AdV capsid prevents vertex removal and thereby blocks subsequent steps in uncoating that are required for release of protein VI and endosomalysis during infection. In addition to informing the mechanism of defensin-mediated neutralization of a non-enveloped virus, these studies provide insight into the mechanism of AdV uncoating and suggest new strategies to disrupt this process and inhibit infection

    Breed and adaptive response modulate bovine peripheral blood cells’ transcriptome

    Get PDF
    Background: Adaptive response includes a variety of physiological modifications to face changes in external or internal conditions and adapt to a new situation. The acute phase proteins (APPs) are reactants synthesized against environmental stimuli like stress, infection, inflammation. Methods: To delineate the differences in molecular constituents of adaptive response to the environment we performed the whole-blood transcriptome analysis in Italian Holstein (IH) and Italian Simmental (IS) breeds. For this, 663 IH and IS cows from six commercial farms were clustered according to the blood level of APPs. Ten extreme individuals (five APP+ and APP- variants) from each farm were selected for the RNA-seq using the Illumina sequencing technology. Differentially expressed (DE) genes were analyzed using dynamic impact approach (DIA) and DAVID annotation clustering. Milk production data were statistically elaborated to assess the association of APP+ and APP- gene expression patterns with variations in milk parameters. Results: The overall de novo assembly of cDNA sequence data generated 13,665 genes expressed in bovine blood cells. Comparative genomic analysis revealed 1,152 DE genes in the comparison of all APP+ vs. all APP- variants; 531 and 217 DE genes specific for IH and IS comparison respectively. In all comparisons overexpressed genes were more represented than underexpressed ones. DAVID analysis revealed 369 DE genes across breeds, 173 and 73 DE genes in IH and IS comparison respectively. Among the most impacted pathways for both breeds were vitamin B6 metabolism, folate biosynthesis, nitrogen metabolism and linoleic acid metabolism. Conclusions: Both DIA and DAVID approaches produced a high number of significantly impacted genes and pathways with a narrow connection to adaptive response in cows with high level of blood APPs. A similar variation in gene expression and impacted pathways between APP+ and APP- variants was found between two studied breeds. Such similarity was also confirmed by annotation clustering of the DE genes. However, IH breed showed higher and more differentiated impacts compared to IS breed and such particular features in the IH adaptive response could be explained by its higher metabolic activity. Variations of milk production data were significantly associated with APP+ and APP- gene expression patterns

    Cathelicidin-like Helminth Defence Molecules (HDMs) Absence of Cytotoxic, Anti-microbial and Anti-protozoan Activities Imply a Specific Adaptation to Immune Modulation

    Get PDF
    Host defence peptides (HDPs) are expressed throughout the animal and plant kingdoms. They have multifunctional roles in the defence against infectious agents of mammals, possessing both bactericidal and immune-modulatory activities. We have identified a novel family of molecules secreted by helminth parasites (helminth defence molecules; HDMs) that exhibit similar structural and biochemical characteristics to the HDPs. Here, we have analyzed the functional activities of four HDMs derived from Schistosoma mansoni and Fasciola hepatica and compared them to human, mouse, bovine and sheep HDPs. Unlike the mammalian HDPs the helminth-derived HDMs show no antimicrobial activity and are non-cytotoxic to mammalian cells (macrophages and red blood cells). However, both the mammalian- and helminth-derived peptides suppress the activation of macrophages by microbial stimuli and alter the response of B cells to cytokine stimulation. Therefore, we hypothesise that HDMs represent a novel family of HDPs that evolved to regulate the immune responses of their mammalian hosts by retaining potent immune modulatory properties without causing deleterious cytotoxic effects. © 2013 Thivierge et al
    • …
    corecore