2,453 research outputs found

    Correlations between spectra with different symmetry: any chance to be observed?

    Full text link
    A standard assumption in quantum chaology is the absence of correlation between spectra pertaining to different symmetries. Doubts were raised about this statement for several reasons, in particular, because in semiclassics spectra of different symmetry are expressed in terms of the same set of periodic orbits. We reexamine this question and find absence of correlation in the universal regime. In the case of continuous symmetry the problem is reduced to parametric correlation, and we expect correlations to be present up to a certain time which is essentially classical but larger than the ballistic time

    Transition from Gaussian-orthogonal to Gaussian-unitary ensemble in a microwave billiard with threefold symmetry

    Full text link
    Recently it has been shown that time-reversal invariant systems with discrete symmetries may display in certain irreducible subspaces spectral statistics corresponding to the Gaussian unitary ensemble (GUE) rather than to the expected orthogonal one (GOE). A Kramers type degeneracy is predicted in such situations. We present results for a microwave billiard with a threefold rotational symmetry and with the option to display or break a reflection symmetry. This allows us to observe the change from GOE to GUE statistics for one subset of levels. Since it was not possible to separate the three subspectra reliably, the number variances for the superimposed spectra were studied. The experimental results are compared with a theoretical and numerical study considering the effects of level splitting and level loss

    Phase shift experiments identifying Kramers doublets in a chaotic superconducting microwave billiard of threefold symmetry

    Full text link
    The spectral properties of a two-dimensional microwave billiard showing threefold symmetry have been studied with a new experimental technique. This method is based on the behavior of the eigenmodes under variation of a phase shift between two input channels, which strongly depends on the symmetries of the eigenfunctions. Thereby a complete set of 108 Kramers doublets has been identified by a simple and purely experimental method. This set clearly shows Gaussian unitary ensemble statistics, although the system is time-reversal invariant.Comment: RevTex 4, 5 figure

    Semiclassical approach to discrete symmetries in quantum chaos

    Full text link
    We use semiclassical methods to evaluate the spectral two-point correlation function of quantum chaotic systems with discrete geometrical symmetries. The energy spectra of these systems can be divided into subspectra that are associated to irreducible representations of the corresponding symmetry group. We show that for (spinless) time reversal invariant systems the statistics inside these subspectra depend on the type of irreducible representation. For real representations the spectral statistics agree with those of the Gaussian Orthogonal Ensemble (GOE) of Random Matrix Theory (RMT), whereas complex representations correspond to the Gaussian Unitary Ensemble (GUE). For systems without time reversal invariance all subspectra show GUE statistics. There are no correlations between non-degenerate subspectra. Our techniques generalize recent developments in the semiclassical approach to quantum chaos allowing one to obtain full agreement with the two-point correlation function predicted by RMT, including oscillatory contributions.Comment: 26 pages, 8 Figure

    Playing relativistic billiards beyond graphene

    Get PDF
    The possibility of using hexagonal structures in general and graphene in particular to emulate the Dirac equation is the basis of our considerations. We show that Dirac oscillators with or without restmass can be emulated by distorting a tight binding model on a hexagonal structure. In a quest to make a toy model for such relativistic equations we first show that a hexagonal lattice of attractive potential wells would be a good candidate. First we consider the corresponding one-dimensional model giving rise to a one-dimensional Dirac oscillator, and then construct explicitly the deformations needed in the two-dimensional case. Finally we discuss, how such a model can be implemented as an electromagnetic billiard using arrays of dielectric resonators between two conducting plates that ensure evanescent modes outside the resonators for transversal electric modes, and describe an appropriate experimental setup.Comment: 23 pages, 8 figures. Submitted to NJ

    Interactional positioning and narrative self-construction in the first session of psychodynamic-interpersonal psychotherapy

    Get PDF
    The purpose of this study is to identify possible session one indicators of end of treatment psychotherapy outcome using the framework of three types of interactional positioning; client’s self-positioning, client’s positioning between narrated self and different partners, and the positioning between client and therapist. Three successful cases of 8-session psychodynamic-interpersonal (PI) therapy were selected on the basis of client Beck Depression Inventory scores. One unsuccessful case was also selected against which identified patterns could be tested. The successful clients were more descriptive about their problems and demonstrated active rapport-building, while the therapist used positionings expressed by the client in order to explore the positionings developed between them during therapy. The unsuccessful case was characterized by lack of positive self-comment, minimization of agentic self-capacity, and empathy-disrupting narrative confusions. We conclude that the theory of interactional positioning has been useful in identifying patterns worth exploring as early indicators of success in PI therapy

    Flavor and Charge Symmetry in the Parton Distributions of the Nucleon

    Get PDF
    Recent calculations of charge symmetry violation(CSV) in the valence quark distributions of the nucleon have revealed that the dominant symmetry breaking contribution comes from the mass associated with the spectator quark system.Assuming that the change in the spectator mass can be treated perturbatively, we derive a model independent expression for the shift in the parton distributions of the nucleon. This result is used to derive a relation between the charge and flavor asymmetric contributions to the valence quark distributions in the proton, and to calculate CSV contributions to the nucleon sea. The CSV contribution to the Gottfried sum rule is also estimated, and found to be small

    Effective Lagrangians and Chiral Random Matrix Theory

    Full text link
    Recently, sum rules were derived for the inverse eigenvalues of the Dirac operator. They were obtained in two different ways: i) starting from the low-energy effective Lagrangian and ii) starting from a random matrix theory with the symmetries of the Dirac operator. This suggests that the effective theory can be obtained directly from the random matrix theory. Previously, this was shown for three or more colors with fundamental fermions. In this paper we construct the effective theory from a random matrix theory for two colors in the fundamental representation and for an arbitrary number of colors in the adjoint representation. We construct a fermionic partition function for Majorana fermions in Euclidean space time. Their reality condition is formulated in terms of complex conjugation of the second kind.Comment: 27 page

    Transition from localized to extended eigenstates in the ensemble of power-law random banded matrices

    Full text link
    We study statistical properties of the ensemble of large N×NN\times N random matrices whose entries Hij H_{ij} decrease in a power-law fashion HijijαH_{ij}\sim|i-j|^{-\alpha}. Mapping the problem onto a nonlinear σ\sigma-model with non-local interaction, we find a transition from localized to extended states at α=1\alpha=1. At this critical value of α\alpha the system exhibits multifractality and spectral statistics intermediate between the Wigner-Dyson and Poisson one. These features are reminiscent of those typical for the mobility edge of disordered conductors. We find a continuous set of critical theories at α=1\alpha=1, parametrized by the value of the coupling constant of the σ\sigma-model. At α>1\alpha>1 all states are expected to be localized with integrable power-law tails. At the same time, for 1<α<3/21<\alpha<3/2 the wave packet spreading at short time scale is superdiffusive: rt12α1\langle |r|\rangle\sim t^{\frac{1}{2\alpha-1}}, which leads to a modification of the Altshuler-Shklovskii behavior of the spectral correlation function. At 1/2<α<11/2<\alpha<1 the statistical properties of eigenstates are similar to those in a metallic sample in d=(α1/2)1d=(\alpha-1/2)^{-1} dimensions. Finally, the region α<1/2\alpha<1/2 is equivalent to the corresponding Gaussian ensemble of random matrices (α=0)(\alpha=0). The theoretical predictions are compared with results of numerical simulations.Comment: 19 pages REVTEX, 4 figure
    corecore