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Universidad s/n, 62210 Morelos, México.
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Abstract.
The possibility of using hexagonal structures in general and graphene in particular

to emulate the Dirac equation is the basis of our considerations. We show that Dirac
oscillators with or without restmass can be emulated by distorting a tight binding
model on a hexagonal structure. In a quest to make a toy model for such relativistic
equations we first show that a hexagonal lattice of attractive potential wells would
be a good candidate. First we consider the corresponding one-dimensional model
giving rise to a one-dimensional Dirac oscillator, and then construct explicitly the
deformations needed in the two-dimensional case. Finally we discuss, how such a
model can be implemented as an electromagnetic billiard using arrays of dielectric
resonators between two conducting plates that ensure evanescent modes outside the
resonators for transversal electric modes, and describe an appropriate experimental
setup.
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1. Introduction

Dirac operators play a central role in relativistic quantum dynamics, from the early work

of Dirac and the exact solutions for the hydrogen atom to later work including quantum

chromodynamics and the Dirac oscillator [1, 2, 3]. Based on early work of Wallace [4],

there has been much recent work centered around the fact that the mean field theory

of graphene is well represented by the free Dirac equation near the edges of the first

Brillouin zone, i.e. at the center of the band with so-called Dirac points around which

linear dispersion relations hold [5, 6, 7]. Simulations of this kind of situation are ongoing

at various labs using hexagonal and occasionally triangular arrays in single particle

problems or classical waves, including acoustics [8], microwaves and photonic crystals

[9] as well as true quantum simulations in nanostructures [10, 11, 12, 13, 14, 15, 16].

We wish to recall, that any lattice with coordination number three will yield points

with approximate linear dispersion relations similar to Dirac points, but we need a tight

binding situation to guarantee isotropic cones and a hexagonal structure to introduce an

additional discrete degree of freedom for the small and large component of the effective

spinor. This becomes very transparent as we note, that using a hexagonal structure

made up of two different triangular structures, we obtain a finite gap in the spectrum,

i.e. a Dirac equation for a massive particle, a situation that would correspond to a

B-N (Boron Nitride) lattice. It is important to note that emulations of these structures

in microwave billiards are restricted to reproduce a single fermion propagating in a

material, since Fermi-Dirac statistics cannot be emulated by electromagnetic waves.

However, a wave representing a single particle can explore all the energy states analogous

to the electronic states in a solid.

In this paper we will adress the task, to find similar analoga for Dirac operators,

that describe situations other than the free particle. Formally we shall assume arrays of

potential wells, that can hold exactly one bound state. In between the wells these states

decay exponentially. As the overlap of functions of two wells describes the coupling, this

implies to a good approximation a tight binding system. In this framework in principle

one and two - dimensional Dirac type problems can be formulated, and in some cases

exactly solved. We shall here focus on the Dirac oscillator as introduced by Marcos

Moshinsky [3]; this system is frequently considered as a paradigm of integrability in

relativistic quantum mechanics [17, 18, 19, 20, 21, 22, 23] and it has been used to model

fermions in confining potentials as well as composite relativstic systems such as hadrons

[25, 26, 24]. We shall see that it is particularly simple to implement. Other solvable

problems, such as gyroscopes [27] and the Coulomb problem as well as systems with

random potentials will be touched upon in the conclusions.

In particular, the one and two dimensional Dirac oscillators have been considered

recently in the context of both relativistic quantum mechanics and quantum optics

[28, 29, 30]. Their importance as paradigmatic integrable models is well established

and their realization in the context of tight binding models is desirable. We want to

stress that the dimensionality in our examples plays a crucial role in their algebraic
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properties and spectra. As we shall see, the exceptional infinite degeneracy of the two

dimensional Dirac oscillator (as opposed to the finite degeneracy in one dimension)

is intimately related to its specific realization on the lattices described above. It is

therefore interesting to consider both dimensionalities, as they exhibit clear differences.

It remains as an open question, whether three dimensional relativistic wave equations

can be emulated on a three dimensional lattice.

The description of such systems will depend on a massive distortion of the hexagonal

lattice. This causes probably prohibitive obstacles to any implementation in terms of

mean fields of graphene related structures. For recent theoretical work dealing with

deformations on carbon sheets see [31]. Other works dealing with deformed graphene in

connection with integrable systems such as Landau electrons can be found [32, 33]. For

classical wave models on the other hand such distortions can be implemented and we

shall discuss specifically how this is done in what we usually call a microwave billiard. In

two dimensions such systems yield scalar wave equations, and can readily be interpreted

as single particle quantum systems [34].

Microwave billiards have been used to simulate a wide variety of phenomena

including quantum chaos [35, 36, 37, 38], scattering from open billiards [39, 40], transport

phenomena [41, 42], fidelity decay [43, 44] and disordered systems [45, 46], as well as

recent work on Dirac points [47], [49]. This wide range of success combined with recent

experiments with arrays of small dielectric micro wave resonators gives us good reason

to hope for interesting results in ordered structures such as the ones we need. The

evanescence of the cavity modes, that we intend to use, guarantees exponential decay

and thus tight binding situations can be emulated.

In the next section we study a one dimensional crystal; this will serve us to fix

notation and basic ideas in a simpler context, that is not without relevance in itself.

This toy model reveals Dirac-like hamiltonians in both periodic and deformed structures.

In section 3 we analyze and reproduce similar results for the two dimensional case

with and without deformations. We also consider corrections to nearest neighbour

interactions and obtain the form of energy surfaces beyond tight binding. In section 4

we make contact with experimental applications of our treatment by considering arrays

of resonators in microwave cavities. The applicability of the tight binding model in

this context is discussed. Finally, we draw some conclusions and give an outlook on a

selection of other Dirac systems, that can be emulated. Useful results are included in

the appendix.

2. One-dimensional crystal

In this section we start out with two lattices. First, we consider the Schroedinger

equation with square wells supporting a single bound state, located in a periodic one

dimensional array. Here, traditional aspects of the existing theory (i.e.Bloch waves) are

reviewed under an algebraic approach. The specific form of the localized wave functions

is ignored, as it results to be irrelevant. An analogy between degeneracy points of the
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spectrum and a one dimensional Dirac point is revealed in this toy model. Near these

points we shall cover a one-dimensional Dirac equation.

Once this is achieved, we proceed to deform the lattice from its periodic

configuration by forcing a specific operator algebra, namely the one corresponding to

harmonic oscillator ladder operators. As an outcome, a one dimensional Dirac oscillator

shall be realized.

2.1. The Dirac point in one dimension

We start by fixing some notation. In the following, we adopt natural units h̄ = c = 1.

A lattice consisting of two periodic sublattices is considered. Let λ be the distance

between neighbouring potential wells. They have the same period and are denoted as

type A and type B. Each sublattice point can be labeled by an integer n according to

its position on the line, i.e. xn for type A and yn for type B (see figure 1). The energy

of the single level to be considered in the well is denoted by α and β for type A and

B respectively. The state corresponding to a particle at site n of lattice A is denoted

by |n〉A and the corresponding localized wave function is given by ξA(x− xn) = 〈x|n〉A.

For lattice B we define the wavefunction ξB(x− yn) = 〈x|n〉B. Our hamiltonian is well

approximated by a tight binding model if the overlap between localized wave functions

can be neglected and the nearest neighbour coupling matrix element ∆ is taken as the

first off-diagonal element of the hamiltonian in the localized basis.

For convenience we have split the lattice into two sublattices and we write the

hamiltonian in the form

H =

(
HAA HAB

HBA HBB

)
(1)

rather than in the usual tridiagonal form. The entries of each block are given by

Hn,m
ij = 〈n|Hij|m〉 with n,m integers. Thus, each block extends from 〈−∞|Hij| − ∞〉

to 〈∞|Hij|∞〉. In this basis we write the hamiltonian as

H =




. . .

α

α
. . .

. . .

∆ ∆

∆ ∆
.. .

. . .

∆

∆ ∆

∆
.. .

. . .

β

β
. . .




(2)

where the elements outside the indicated diagonals are all zero. Expression (2) can be

cast in terms of Pauli matrices σ3, σ+ = σ1 + iσ2, σ− = σ†+ by defining Π = HAB⊗1 and

setting M = (α− β)/2, E0 = (α+ β)/2. We have



Playing relativistic billiards beyond graphene 5

Figure 1. Configuration of potential wells (or resonators) on a one-dimensional
lattice. Chain a) shows the periodic case. Chain b) corresponds to a general
deformation of both sublattices. Chain c) shows the resulting deformation after
imposing the harmonic oscillator algebra.

H = E0 + σ3M + σ+Π + σ−Π† (3)

displaying explicitly the Dirac-like structure of the hamiltonian. To ensure the analogy

between the Dirac hamiltonian and (3), we consider the spectrum of H. We note that

Π has the remarkable properties

[Π,Π†] = 0, ΠΠ† = ∆(Π + Π†). (4)

From these relations we may compute the spectrum by squaring H

(H − E0)
2 = M2 + ΠΠ†. (5)

Note that Bloch’s theorem manifests itself in the spectrum and eigenfunctions of ΠΠ†

as

Πφk = ∆(1 + ei2πλk)φk, ΠΠ†φk = ∆2|1 + ei2πλk|2φk (6)
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with

φk =
∞∑

n=−∞
ei2πλkn|n〉 =




...

ei2πλkn

ei2πλk(n+1)

...



. (7)

Therefore energies and eigenfunctions of H are given by

E(k) = E0 ±
√

∆2|1 + ei2πλk|2 +M2, ψ± = N


 φk

±E(k)−E0−M
∆(1+ei2πλk)

φk


 , (8)

where N is a normalization constant. When M = 0 i.e.when the sites A and B are

equal, we can find conical points of the form k0 = ±1/(2λ). Expanding around these

points we find the usual expressions for the relativistic energies of Dirac particles with

momentum κ = k − k0, effective speed of light ∆:

E(κ) = E0 ±
√

∆2κ2 +M2. (9)

This is valid also for non-zero rest energy M in the case of different lattices. Then we

find a gap in the spectrum. The eigenfunctions satisfy the Dirac equation in momentum

space

(E − E0)ψ
±(κ) = [σ1κ+ σ3M ]ψ±(κ). (10)

In the next subsection we shall proceed to show that we can obtain the Dirac oscillator

by deforming the double lattice.

2.2. One-dimensional Dirac oscillator and lattice deformations

Using the notation of the previous section, we modify the energy operator by deforming

the lattice of potential wells. This implies abandoning the periodic structure and leads

to a site dependence of the couplings in the corresponding tight binding model. We

denote by ∆n,n+1 the coupling between sites at yn and xn+1, while ∆n,n denotes the

coupling between sites xn and yn. These couplings are approximately proportional to

the overlap between neighbouring sites. They decay exponentially as a function of the

separation distance between the potential wells, i.e.

∆n,n+1 = ∆e−dn/Λ, ∆n,n = ∆e−d′n/Λ (11)

where dn and d′n are the deviations from the periodic configuration, i.e. dn + λ =

|yn+1−xn|, d′n+λ = |yn−xn|. When dn = d′n = 0, the periodic configuration is recovered
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(see figure). The length Λ is the penetration depth into the classically forbidden region

for the wave function of the single well. We expect a modification of the operators Π,Π†

caused by the change in the position of the wells. One should keep in mind that such

deformations have the effect of breaking the periodic symmetry of the system and Bloch

wave functions cease to be useful. However, if one finds an exactly solvable model for

a deformation which is continuously connected to the periodic configuration, then the

corresponding solutions could be considered to constitute a generalization of Bloch’s

waves.

The algebraic properties of observables in hamiltonians have a clear connection

with integrability and exact solvability. Therefore, the simplest way to extend our

hamiltonian is by replacing the operators Π,Π† by a, a†, such that their algebraic

properties are those of known solvable systems. In particular, we propose the harmonic

oscillator algebra, since it is a paradigmatic example [51]. The hamiltonian (3) becomes

H = E0 + σ3M + σ+a+ σ−a†. (12)

We require that such extensions reduce to the periodic case in some free limit. We

propose then

a =




. . .

∆n,n ∆n,n+1

∆n+1,n+1 ∆n+1,n+2

. . .




(13)

and impose the condition

[a, a†] = ω∆ = constant (14)

where ω stands for a frequency. If ω∆ = 0 we recover the algebra of Π,Π† (Bloch limit).

Computing the commutator in (14), one finds the conditions

∆n,n = ∆n−1,n−1 = ∆, ∆2
n+1,n+2 −∆2

n,n+1 = ω∆ (15)

where the first equality is a recurrence relation solved by the constant ∆. The second

equality is a recurrence relation solved by

∆n,n+1 =
√

∆2 − nω∆, n ∈ Z (16)

and thus
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a =




. . .

∆
√

∆2 − nω∆

∆
√

∆2 − (n− 1)ω∆
.. .




(17)

Imposing the conditions (11) in this solution we find

∆e−d′n/Λ = ∆ (18)

∆e−dn/Λ =
√

∆2 − nω∆ ∈ R

The first condition implies d′n = 0 (a chain of dimers). The second condition relates the

displacement between resonators dn with the corresponding couplings.

For convenience we impose a third condition, namely the inequality

dn > dn−1 (19)

This condition ensures that the displacement dn increases monotonically as a function of

the distance from an arbitrarily chosen origin. Combining it with the second condition

this implies a finite grid, which in turn leads to a finite Hilbert space of dimension

nmax + 1 with nmax = [|∆
ω
|]. The operator a takes the finite matrix form

a′ =




∆
√

∆2 − nmaxω∆

∆
√

∆2 − (nmax − 1)ω∆
.. .


 . (20)

In principle other non-monotonical choices of scaling dn are possible and lead to other

finite or infinite arrays. For our modeling purposes finite arrays are advantageous, since

they can be easily implemented in a real situation. Moreover, a localization effect of

wavefunctions around the origin of the array is possible due to an increasing distance of

resonators. The analogy with a particle trapped by a potential is thus realized and the

explicit form of wavefunctions can be found in the appendix. In any case our hamiltonian

will emulate a Dirac oscillator only in the vicinity of zero energy (energies near E0) as

we will see later.

We now have to check the commutation relations between a′ and a′†

[a′, a′†] = ω∆1 + [∆2 − (nmax + 1)ω∆]




1

0

0
. . .




(21)

= ω∆1 +O(1/nmax).
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Note that the correction term is of order 1/nmax as the principal term is accompanied

by the identity, while the correction acts only in the first component of this basis. The

prefactor is of order 1 since ∆/ω ' [|∆/ω|] + 1. The distortion is

dn = Λ log

(
∆2

∆2 − nω∆

)
, 0 ≤ n ≤ nmax (22)

Now we can replace a′ by a and return to the hamiltonian (12) for the finite system.

Such hamiltonian allows analytical solutions for energies and eigenfunctions. Our

approximate construction of (12) allows to compute the spectrum and eigenfunctions

up to a shift smaller than unity. As we shall see, they correspond to those of the

Dirac oscillator [3]. We consider eigenvectors φn of the number operator such that

a†a φn = (ω∆)nφn, a†φn =
√
ω∆(n+ 1)φn+1 and aφ0 = 0. The hamiltonian has an

integral of the motion given by the operator I = a†a + 1
2
ω∆(σ3 + 1) with eigenstates

φn|+〉, φn+1|−〉. In this basis, H − E0 is reduced to 2× 2 blocks of the form


 M

√
ω∆(n+ 1)√

ω∆(n+ 1) −M


 . (23)

These blocks can be diagonalized, leading to the energies

E(n) = E0 ±
√
ω∆(n+ 1) +M2, 0 ≤ n ≤ nmax. (24)

An additional 1×1 block is due to the singlet ψ0 = φ0|−〉, leading to Hψ0 = (E0−M)ψ0.

The eigenfunctions corresponding to the doublets are obtained in the form

ψ±n+1 = N


φn|+〉+

±(E(n)− E0)−M√
ω∆(n+ 1)

φn+1|−〉

 , 0 ≤ n ≤ nmax, (25)

where N is a normalization constant. The specific form of φn is given in the appendix.

We would like to emphasize that the validity of these solutions is only restricted by

our approximate construction of the modeling hamiltonian. Once the tight binding

approximation is imposed and the O(1/nmax) corrections are neglected, the resulting

energies and wavefunctions are analytical solutions of the stationary problem. The usual

representation of a Dirac oscillator in terms of momentum and a confining potential is

obtained by the transformation P = i(a + a†) − k0, X = (a + a†). In the Bloch limit

ω = 0, and P reduces to the momentum operator around the conical point.

In the next section we shall see that a similar construction occurs very naturally

if we deform hexagonal lattices in two dimensions, which in the undeformed case are

closely related to the mean field theory of graphene and boron nitride sheets.
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3. Two-dimensional crystal

The concepts given in the last section are now extended to two dimensions. We shall

consider hexagonal structures that emulate two-dimensional Dirac equations and can

emulate the mean field of graphene or Boron-Nitride near the gap at the center of the

usual band. We shall use the same algebraic strategy to derive spectra and a possible

extension through deformations, namely the two-dimensional Dirac oscillator.

3.1. Hexagonal lattice

Let us fix the notation for this system. The honeycomb lattice is divided in two

triangular sublattices, one of them generated by the set of vectors a1 = (3
√

2, 0), a2 =

(−3/
√

2, 3/2), a3 = (3/
√

2,−3/2) (type A) while the other sublattice is obtained by

adding the vectors b1 = (0, 1),b2 = (−3/
√

2,−1/2),b3 = (3/
√

2,−1/2). These vectors

are given in arbitrary units (see figure 2). We denote the linear combinations of ai

by A, where A is a vector parametrizing the points of sublattice A. For sublattice

B we use the vector parameter A + b1. The position vectors rA, rB of the periodic

lattices are obtained by introducing the factor λ. For periodic arrays this means

rA = λA, rB = λB. In further considerations this notation will be useful, since deformed

lattices admit a parametrization by vectors A,B, but the corresponding position vectors

rA, rB become more complicated functions of ai,bi. The state vectors for individual

potential wells on grid A shall be denoted by |A〉, giving wave functions of individual

wells as ξA(r−rA) = 〈r|A〉. For grid B we use |A+b1〉. As before, we consider different

energies for the wells on grids A and B.

Similarly as in the one-dimensional case, the hamiltonian in the tight binding

approximation is constructed as

H = α
∑

A

|A〉〈A|+ β
∑

A

|A + b1〉〈A + b1| (26)

+
∑

A,i=1,2,3

∆ (|A〉〈A + bi|+ |A + bi〉〈A|)

where the first two terms indicate the total on-site energy on grids A and B respectively,

while the last sum indicates the nearest neighbour interaction with coupling strength

∆. We shall analyze this system by considering again a subdivision of the Hilbert space

according to sublattices A and B. Due to the coordination number in this lattice, the

matrix representation in section 2 is no longer feasible. However, we may construct the

usual Pauli operators through the definitions

σ+ =
∑

A

|A〉〈A + b1|, σ− = σ†+ (27)

σ3 =
∑

A

|A〉〈A| − |A + b1〉〈A + b1|, 1 =
∑

A

|A〉〈A|+ |A + b1〉〈A + b1|,
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Figure 2. Vectors in a two dimensional hexagonal lattice. The vectors bi

connect sublattice A with sublattice B. The vectors ai connect points in the
same sublattice.

while the operators Π,Π† are defined through

Π =
∑

A,i

∆ (|A〉〈A + bi − b1|+ |A + b1〉〈A + bi|) . (28)

They have the algebraic properties

[σ3, σ±] = ±2σ±, [Π,Π†] = 0, [Π, σi] = 0 (29)

With M and E0 given as in section 2, we obtain the hamiltonian

H = E0 +Mσ3 + σ+Π + σ−Π† (30)

and

(H − E0)
2 = M2 + ΠΠ† (31)

Using Bloch waves, we have eigenvectors of the form [50]

φa
k =

∑

A,i

e−i2πλk·A|A〉, φb
k =

∑

A,i

e−i2πλk·(A+b1)|A + b1〉 (32)

for grids A and B respectively. They satisfy
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ΠΠ†φa,b
k = ∆2|∑

i

ei2πλbi·k|2φa,b
k (33)

Πφa,b
k = ∆

∑

i

ei2πλbi·kφa,b
k

The spectrum and the eigenfunctions are then

E(k) = E0 ±
√

∆2|∑
i

ei2πλbi·k|2 +M2 (34)

ψ± = C±φa
k +D±φb

k, C± =
±(E(k)− E0)−M

∆(
∑

i ei2πλbi·k)
D± (35)

The degeneracy points of the spectrum for the massless case are k0 = ± 1
2λ

(1,−√3).

Expanding around such points one finds

E(k− k0)− E0 = ±
√

∆2k2 +M2 (36)

as expected. One can verify that the Dirac equation is again satisfied.

3.2. The importance of the tight binding approximation

We have formulated a theory describing the propagation of waves in hexagonal arrays

of resonators with and without deformations. The treatment has been successful in

predicting the existence of Dirac points, in compliance with the common knowledge

about this system when periodic symmetry is present. However, one may ask whether

the tight binding approximation is an essential ingredient for a Dirac-like behaviour of

the propagating wave.

To answer this, let us review some of the assumptions we made and the

corresponding properties obtained for the two-dimensional Dirac wavefunction. The

spin emerges as the probability of the electrons to be located at sites of the triangular

sublattice A (spin up) or B (spin down). The momentum (or wave vector) as a conserved

quantity came directly from Bloch’s theorem, i.e. the periodicity of the system. Linearity

around degeneracy points (which is essential to produce a Dirac hamiltonian) is a

consequence of the hexagonal structure, while the existence of such degeneracy points

came from the symmetry under the interchange of the two sublattices. We have seen

that the appearence of mass corresponds to the lift of such degeneracy.

In addition to all these properties, one should consider isotropy as a fundamental

requirement for the emulation of a free Dirac particle. We claim that rotational

symmetry around degeneracy points is a direct consequence of the tight binding

approximation, as we shall see. It is well known that rotational symmetry in the Dirac

equation demands a transformation of both orbital and spinorial degrees of freedom. It
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is in the orbital part that we shall concentrate by studying the energy surfaces around

degeneracy points beyond the tight binding model.

Let us recall that the transition amplitudes between nearest neighbours (hopping

transition) gave rise to the hamiltonian

H = σ+Π + σ−Π† (37)

where the kinetic operator Π could be constructed in terms of translation operators

between nearest sites, i.e.

Π = ∆
∑

i=1,2,3

Tbi
, (38)

with Tbi
the one-site translation operator in the direction of bi. Since degeneracy points

are located using the condition Hψ0 = 0 for a Dirac state ψ0, and given the fact that

[Π,Π†] = 0, it suffices to impose Πψ0 = 0. The operators Tbi
are unitary and commute

with each other, implying that their eigenvalues can be found simultaneously as eiλk·bi ,

where k is any real wave vector. Small deviations from degeneracy points (denoted by

k0) in the form k = k0 + κ give the energy

E = ∆|∑
i

exp (iλ(k0 + κ) · bi)| ' ∆λ|κ|, (39)

which is rotationally invariant in κ. However, one may try to introduce interactions

between sites separated by more than one step under lattice translations. It is clear

that a second-neighbour interaction of strength ∆′ modifies the kinetic operator Π as

Π = ∆
∑

i=1,2,3

Tbi
+ ∆′ ∑

i=1,2,3

(Tai
+ T−ai

) , (40)

where the vectors ai have now appeared, connecting a point with its six second

neighbours. The energy equation becomes

E = |∆ ∑

i

exp (iλk · bi) + ∆′ ∑

i

2 cos (λk · ai)|. (41)

We expect a deviation of degeneracy points k′0, for which k = k′0+κ. Upon linearization

of the exponentials in κ we find the energy

E '
√

(κ · u)2 + (κ · v)2 (42)

where the vectors are given by
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u = λ∆
∑

i

cos(λk′0 · bi)bi (43)

v = λ∆
∑

i

sin(λk′0 · bi)bi + 2λ∆′ ∑

i

sin(λk′0 · ai)ai (44)

Thus, the presence of ∆′ yields the energy surfaces (42) as cones with elliptic sections

whenever κ is inside the first Brillouin zone. Regardless of how we complete the energy

contours to recover periodicity, it is evident that the resulting surfaces are not invariant

under rotations around degeneracy points. The circular case is recovered only when

∆′ = 0, leading to k′0 = k0. In this case, the vectors reduce to v = (1, 0),u = (0, 1)

when k0 is the degeneracy point at (1/2λ, 0).

In summary, extending the interactions to second neighbours has the effect of

breaking the isotropy of space around degeneracy points, which is an essential property

of the free Dirac theory.

3.3. Two-dimensional Dirac oscillator

Before analyzing lattice deformations, let us recall [22, 28] that the two dimensional

Dirac oscillator hamiltonian is quite similar to the one dimensional case, except for the

replacement a 7→ aR, where aR = ax + iay is the chiral (right) anhilation operator in

terms of cartesian anhilation operators ax, ay. The corresponding number operator is a

conserved quantity and is given by NR = N − L, i.e. the difference between the total

number operator and the orbital angular momentum. Since the chiral left operator

is absent in the expresion, the spectrum is infinitely degenerate. Eigenfunctions are

constructed as a combination of two usual harmonic oscillator functions with defined

orbital angular momentum. Our aim is to produce the spectrum for this problem in

the hexagonal array, together with a deformation which allows localization of the wave

functions around some center.

We proceed to deform the lattice through an extension of the kinetic operators, in

analogy to the one dimensional case. Let us consider site dependent couplings ∆(A,A+

bi) connecting the sites labeled by A,A + bi. Again, these are related to distances

d(A,A + bi) between potential wells as ∆(A,A + bi) = ∆ exp(−d(A,A + bi)/Λ). We

define the ladder operator

aR =
∑

A,i

∆(A,A + b1) (|A〉〈A + bi − b1|+ |A + b1〉〈A + bi|) (45)

and impose [aR, a
†
R] = ω∆. After some algebra, one can prove that this leads to the

conditions

∆(A,A + b1) = ∆, (46)
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∆2(A,A + b2) + ∆2(A + b2,A + b2 − b3) = (47)

∆2(A + b1,A + b1 − b3) + ∆2(A + b1 − b3,A + b1 + b2 − b3),

∆2(A,A + b2) + ∆2(A,A + b3) = (48)

∆2(A + b1,A + b1 − b3) + ∆2(A + b1,A + b1 − b2) + ω∆.

The vector b1 in the first equation was chosen arbitrarily, but due to symmetry a choice

of b2 or b3 would be equivalent. Due to the coordination number three, we obtain

three relations rather than the two of the one-dimensional case. As complicated as

the recursion relations may seem, one can easily construct a lattice reproducing them

consistently. The relations (46) and (47) establish an equality between the lengths of

opposite sides of a given hexagon. The relation (48) containing ω gives the deformation

and can be split in two parts

∆2(A,A + b2)−∆2(A + b1,A + b1 − b2) = ω∆ sin2 θ (49)

∆2(A,A + b3)−∆2(A + b1,A + b1 − b3) = ω∆ cos2 θ (50)

where θ is an arbitrary angle. Having chosen previously the privileged direction b1, the

angle θ determines the relative stretching between directions b2 and b3 on the seminal

cell. The choice θ = 0 produces deformations only in one direction of the lattice (b3),

resembling the one dimensional case discussed above. This leads to a logarithmic law for

the deviation distance similar to (11). Logarithmic stretching will hold for an arbitrary

angle θ. To construct the grid in the general case, one starts with a regular hexagon

as a seed and completes the scheme in figure 3 by extending lines of equal length in

the direction of b1. Then, one completes the hexagons by drawing parallel lines for

the opposite sides as shown also in the figure 3. Hexagonal cells satisfy the recursion

relations above trivially.

A restriction to a finite dimensional space occurs in a way similar to the one

dimensional case. The maximum number of levels is Nmax = [|∆
ω
|].

Considering aR as the chiral operator restricted to this finite dimensional space, the

resulting hamiltonian of this problem is

H = E0 + σ3M + σ+aR + σ−a
†
R. (51)

As the hamiltonian (51) is formally identical to that in the one-dimensional case, we

find the eigenvalues
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Figure 3. Construction of a deformed lattice satisfying the oscillator
constraints. Here we show the direction in which the length of hexagons grow
as a logarithmic function, departing from a seed represented by a regular
hexagon. The cells above are obtained by drawing vectors b1 of unit length
and then completing the hexagons such that oposite sides are parallel and of
the same length.

E±(NR + 1) = E0 ±
√
ω∆(NR + 1) +M2, 0 ≤ NR ≤ ∆/ω, (52)

E(0) = E0 −M.

The shape of the eigenfunctions is obtained by solving aRφ0 = 0 and applying the raising

operators similar to appendix A.

The hamiltonian does not depend on the left operators aL, a
†
L where aL = (aR)∗.

In the full space this would imply a Landau electron-like infinite degeneracy. The

degeneracy does not occur for a fixed array of resonators, but it can be interpreted to

reflect the arbitray choice of θ if we consider the hypothetical use of an ensemble of

arrays for all angles θ.

Note that there is a physical limitation to the allowed degree of distortion which

results from the fact that the nearest neighbours can change. Before this happens, the

coupling of potential wells can no longer be dominated by the original three nearest

neighbours.

In figures 4, 5, 6 we give some realizations of lattice deformations following the

procedure indicated previously. The examples are related to the choices of θ =

0, π/4, π/2, which determine the vectors to be deformed with a logarithmic law near

the x axis of the graphs.
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Figure 4. Case 1: Two dimensional lattice obtained by setting θ = 0, λ = 1,
ω = 1/15. We start by deforming the vector b3 near the seminal cell at the
origin. For the rest of the lattice, we follow the recurrence relations and the
construction indicated in the text. Periodicity appears in the direction b1−b2
indicated with a line at 60 degrees and passing through the origin.
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Figure 5. Case 2: Two dimensional lattice obtained by increasing the angle
θ = π/4. As before, λ = 1, ω = 1/15. In this case both vectors b2 and b3
are deformed near the seminal cell at the origin. The rest of the lattice is
constructed by using the recurrence relations and completeting the hexagons
such that opposite sides have equal length. There is no periodic symmetry in
this case.
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Figure 6. Case 3: Two dimensional lattice obtained by setting θ = π/2. As
before, λ = 1, ω = 1/15. In this case, the vector b2 is deformed near the
regular cell at the origin. The rest of the lattice is constructed by using the
recurrence relations and completeting the hexagons such that opposite sides
have equal length. There is no periodic symmetry in this case.

4. Experimental implementation in microwave cavities

To emulate Dirac-like equations on two dimensional arrays of resonators, we have to

generate a scalar field. For electromagnetic fields, this can be achieved in a 2D metallic

cavity which supports two types of independent modes: transverse magnetic (TM) mode,

ψ(r) = Ez(r), and transverse electric (TE) mode, ψ(r) = Hz(r), r lying in the plane of

the cavity. For a cavity of height h (in the z-direction) and for frequencies ν < c/2h,

the scalar field obeys the Helmholtz equation

−∇2ψ(r) = k2ψ(r). (53)

For the top and bottom plates, it fulfills Dirichlet or Neumann boundary conditions, for

TM and TE modes respectively. For cavities with a typical horizontal extension of a tens

of centimeters and a typical height of a few millimeters, the frequency range of interest

lies in the domain of microwaves. Such cavities constitute paradigmatic examples for a

variety of phenomena in open and closed two-dimensional systems as discussed in the

introduction.

The experimental set-ups using chaotic microwave cavities adopt various

configurations depending on the specific studies they are intended for, but the technique

to feed microwaves into the cavity and to collect the signal of interest is ubiquitous. The

central device is the network analyzer which performs emission and lock-in detection

of microwaves from a few tens of MHz to a few tens of GHz. The cavity is linked

to the network analyzer through flexible coaxial 50Ω-cables connected to monopolar



Playing relativistic billiards beyond graphene 19

antennas whose central conductor penetrates into the cavity. Usually, several antennas

are dispatched over the top and/or bottom plates. For a measurement, only one antenna

at a time is used as a microwave emitter and another (in transmission) or the same (in

reflection) as a receiver. The other unused antennas are terminated by 50Ω loads so that

all antennas behave the same way regarding the losses they imply. The measurements

are given in terms of scattering coefficients which form the complex S-matrix

S =

(
S11 S12

S21 S22

)
, (54)

where S11 (resp. S22) measures the reflection on port 1 (resp. 2) and S12 (resp.

S21) measures the transmission from port 2 (resp. 1) to port 1 (resp. 2). All the

measurements are performed after a proper calibration to get rid of any parasitic

influence of cables and connectors and even of the analyzer itself.

In a microwave cavity, a varying potential can be obtained by introducing

substances of a varying permitivity ε(r). The wave equation then reads:

[−∇2 + (1− ε(r))k2]ψ(r) = k2ψ(r). (55)

Note that the effective potential Ṽ (r) = (1 − ε(r))k2 is energy-dependent. This does

not preclude the quantum-classical analogy.

Recently, one of us developed experiments implementing equation (55) in a

disordered microwave cavity[45]. The physical phenomenon put under scrutiny was

Anderson (or strong) localization (see [52] for a recent survey of this prolific domain). A

network analyzer Rohde & Schwarz ZVA-24 was used in a frequency range from 1GHz

to 10GHz. The disordered potential was introduced through 200 dielectric cylinders

(Temex-Ceramics, E2000 series) of high dielectric permitivity (ε = 37) and low loss

(quality factor Q = 7 000 at 7 GHz). Their height fitted that of the cavity, 5mm, and

several diameters ranging from 6mm to 8 mm were used. The disorder was numerically

generated and the scatterers were precisely positioned. In this experiment the central

conductor of the antennas was perpendicular to the plane of the cavity. Thus, the TM

polarization of the electromagnetic field was selected. [45][53].

The same dielectric cylinders, used for the localization experiments, can be arranged

in periodic or other ordered patterns. In the domain of optics, periodic structures in

semiconductor materials are widely used to obtain particular transport properties of

guided light. Thanks to photonic crystals (also called photonic band gap materials)

the technology of photons conspire to supplant the one of electrons in domains such

as communication and information technologies, computing and sensing [9]. Microwave

cavity experiments, which are definitely intended for more fundamental issues, bear

the benefits of their versatility. They allow, for example, distortions destroying the

periodicity of the potential such as the ones described in sections 2 and 3 for emulating

Dirac oscillators.

As emphasized in section 3.2, we have to apply the tight binding condition.

In the localization experiment, the field filled all the cavity, TM polarization being
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supported inside and outside the resonators. For the experiments we proposed with

ordered structures, the requirements are quite different. In order to transmit the

energy efficiently into the cylinders, we use in-plane antennas, and consequently TE

polarization. Due to the wavelength reduction by a factor
√
ε ' 6 inside the dielectric

material, TE modes can be excited into the scatterers above 5GHz, while 30GHz is

required in air between the resonators. In the proposed frequency range, resonators

support modes which decay evanescently in the surrounding space. This implies

exponential decay outside the resonators. For a dielectric cylinder of 8mm in diameter,

the first TE mode appears at 6.66 GHz. We experimentally checked that this mode

is isotropic: ψ(r) ∼ J0(r), thus enabling isotropic coupling between resonators. We

studied the range of the coupling and its spatial dependence. Measurements were

done with 2 and 3 resonators equally spaced on a line, and 6 resonators placed at the

vertices of a hexagon (a benzene-like structure). For all configurations, we observed an

exponentially decreasing coupling with a characteristic length of 400 m−1. The 3-cylinder

and benzene measurements clearly established that the second-neighbour coupling is

negligible for distances between the centers of the scatterers above 10mm. This gives a

large range of the coupling constant for which the tight-binding model is fulfilled. All

these experimental results will be published in a forthcoming paper focused on transport

properties in graphene-like structures[47].

As an advance of how the Dirac oscillator shall be realized, we consider resonators

placed at the vertices of the arrays given in figures 4,5 and 6, corresponding to different

states with the same theoretical energy levels (extraordinary degeneracy of the two

dimensional Dirac oscillator). Two types of resonators are needed to produce a mass.

In order to introduce a second resonance coming from type B cylinders, we must ensure

that there is no overlap with other resonances of type A cylinders, located nearly at 5

and 8 GHz according to our experimental results. This suggests a mass M proportional

to a frequency difference from 10 to 100 Mhz. For separation distances of 3 mm we

expect a coupling ∆ ∼ 70 Mhz. The frequency ω is fixed by the decrease of the coupling

as a function of the deformation distance. This can be obtained from the second formula

in (19) for n = 1 or from the corresponding relation for the two-dimensional case. A

deformation distance of 1 mm between nearest resonators would produce ω ∼ 0.1∆ ∼ 7

Mhz and a number of levels nmax ∼ 10 in a window from 6.4 to 7 GHz.

We have thus established that we can meet the conditions for the emulation of the

Dirac oscillator and related problems can be met with arrays of dielectric microwave

oscillators between two condcuting plates. These conditions will also allow to emulate

other Dirac operators corresponding to gyroscopes, disordered systems, etc. Note though

that it will be difficult to emulate a Dirac hydrogen atom as the distances between

resonators should become extremely small, causing conflict with the diameter of the

discs.
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5. Conclusions and outlook

We have proposed that a wide class of relativistic equations of the Dirac type can

be implemented by arrays of potential wells. Such quantum systems can be well

approximated by tight binding hamiltonians if sufficiently fast exponential decay of the

wave functions in the classically prohibited region is ensured. This idea was especifically

implemented for the Dirac oscillator. Furthermore we have shown that we can implement

such a situation experimentally with arrays of dielectric resonators. The use of TE modes

and the conducting plates below and above of the resonators ensures at appropriate

frequencies well isolated resonances in the resonators and exponential decay outside.

We have thus revealed a practical way to emulate Dirac-like equations for both massive

and massless particles using classical wave systems.

While we presented an emulation for the Dirac oscillator in one and two dimensions,

it is clear that our algebraic treatment allows other possibilities. The most promising

example is the emulation of Dirac gyroscopes [27] as the number of states in this case

is finite to begin with due to conservation of total angular momentum. This forces

its realization on finite grids without approximations in that respect. The relativistic

hydrogen atom, on the other hand presents obvious difficulties regarding the steep

potential needed near its singularity and the nearly flat potential at large distances

requires separations too small for the radii of the resonators used. Some intermediate

region of Rydberg states could possibly be emulated. Leaving the realm of integrable

systems, it might be interesting to introduce random small perturbations in the positions

of the wells. This might mimic some properties of random matrix Dirac operators [55].

Appendix A. Eigenfunctions

We first determine the ground state φ0. We write

φ0 =
nmax∑

m=0

f0(m)|m〉 (A.1)

and use aφ0 = 0 to obtain the recurrence equation

(
√

∆2 − (nmax −m)ω∆)f0(m+ 1) + ∆f0(m) = 0 (A.2)

with solution

f0(m) = (−1)mC0

nmax−m∏

j=0

∆√
∆2 − (nmax − j)ω∆

(A.3)

C0 =

(
nmax∑

m=0

Πnmax−m
j=0

∆2

∆2 − (nmax − j)ω∆

)−1/2

.

Applying raising operators we obtain
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φn =
(a†)n

√
(ω∆)nn!

φ0 (A.4)

The space-dependent wave functions φn(x) are obtained by defining a specific form of

the localized functions ξA, ξB. For definiteness, we choose these functions to be the

ground state of a deep square well. The ground state φ0(x) and the density |φ0(x)|2 are

shown in figure A1.

5 10 15 20 25
x @ΛD

Φ Ground State

5 10 15 20 25 x @ΛD

ÈΦÈ2 Ground State Density

Figure A1. Ground state wavefunction and ground state probability density
in position space (in units of λ). The localized wave functions are chosen to
be the groundstate of individual wells with energy α = β = 1. The width of
the wells is 2λ/3. The parameters of the lattice are nmax = 20, ω = 1/20 and
∆ = 1. A gaussian envelope is visible. The signs of the wave function alternate
from site to site.
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