949 research outputs found

    The Concept of Creativity in the Information Systems Discipline: Past, Present, and Prospects

    Get PDF
    In 1993 Couger et al. stated in an MIS Quarterly article on creativity in information systems (IS) organizations that the topic of creativity is under-researched in the IS discipline. Is the subject of creativity—despite its undisputable importance for individuals, organizations, and societies—still a neglected area in IS research? In what contexts, with what methods, and with what results have IS researchers studied the phenomenon of creativity? And what creativity-related themes warrant further investigation? In this article we analyze, based on six analytical dimensions, IS studies on creativity published in the eight top-ranked IS journals as recommended by the Association for Information Systems. The analysis provides a detailed picture of how the concept of creativity has been treated in our discipline’s arguably most influential publication outlets. It becomes apparent that IS researchers have been predominantly employing a rather limited number of research designs aiming at a rather limited number of creativity-related topics. Grounded in our analysis, we discuss the prospects of creativity research in the IS discipline and provide a future research agenda. In doing so, we propose three main research themes that can meaningfully contribute to our discipline

    Toward Process Modeling in Creative Domains

    Get PDF
    Process modeling has emerged as a widely accepted approach in order to reduce organizational complexity in organizations. Process models are used for different purposes, including process analysis and redesign, risk management, and the implementation of software systems. However, the majority of existent approaches is restricted to processes that are wellstructured and predictable. Highly creative environments, such as the film industry or R&D departments, however, are characterized by high levels of flexibility. As existent approaches do not provide ample means to model such processes, this paper discusses the capabilities that a conceptual process modeling grammar for processes in creative environments must provide. Furthermore, we suggest an approach to process analysis that aims at the identification and specification of creativity in business processes. The study belongs to the design science paradigm; the discussion is grounded in a theory that explains the nature of processes that rely on creativity

    Managing Creative Risks

    Get PDF
    Business process management (BPM) has emerged as an important enabler for managing risks. Organizations use BPM techniques such as process modeling to create transparency and to identify process-related risks. Existent risk management frameworks distinguish between different types of risk, such as people, technical, and management risk. Our study suggests that creativity in business processes leads to a particular subset of risks which organizations respond to by applying specific strategies of risk avoidance and mitigation. These creative risks occur within business processes as different people come together to generate creative products. These people bring in different perceptions of creativity and aesthetics and solve creative tasks in different ways. Thus, business processes that involve creativity are characterized by a high variance both in process flow and process outcome which can lead to unwanted consequences. Based on interpretive case studies we introduce the concept of creative risk and explain what strategies organizations can apply to handle it

    The true price of external health effects from food consumption

    Get PDF
    Although global food consumption costs more in terms of impact on human life than money is spent on it, health costs have not been consistently quantified or included in food prices to date. In this paper, a method to determine the external health costs of nutrition and dietetics is developed by employing the cost-of-illness (COI) and true cost accounting (TCA) approaches. This is done exemplarily for the reference country Germany. The results show that 601.50 € per capita and 50.38 billion € in total external health costs are incurred annually due to nutrition. Overall, most costs are accrued through excessive meat consumption (32.56% of costs), deficient whole grain intake (15.42% of costs), and insufficient uptake of legumes (10.19% of costs). Comparing the external health costs with the external environmental costs in Germany, it can be seen that of the total annual costs of around 153.86 billion €, 67.26% originate from environmental impacts and 32.74% from impacts on human life. In order to achieve the 17 Sustainable Development Goals and to increase family as well as public health, there is a need to internalise these external costs into actual food prices

    Conus Medullaris Enterogenous Cyst

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147142/1/pmr2698.pd

    Underwater Use of a Hyperspectral Camera to Estimate Optically Active Substances in theWater Column of Freshwater Lakes

    Get PDF
    Freshwater lakes provide many important ecosystem functions and services to support biodiversity and human well-being. Proximal and remote sensing methods represent an efficient approach to derive water quality indicators such as optically active substances (OAS). Measurements of above-ground remote and in situ proximal sensors, however, are limited to observations of the uppermost water layer. We tested a hyperspectral imaging system, customized for underwater applications, with the aim to assess concentrations of chlorophyll a (CHLa) and colored dissolved organic matter (CDOM) in the water columns of four freshwater lakes with different trophic conditions in Central Germany. We established a measurement protocol that allowed consistent reflectance retrievals at multiple depths within the water column independent of ambient illumination conditions. Imaging information from the camera proved beneficial for an optimized extraction of spectral information since low signal areas in the sensor’s field of view, e.g., due to non-uniform illumination, and other interfering elements, could be removed from the measured reflectance signal for each layer. Predictive hyperspectral models, based on the 470 nm–850 nm reflectance signal, yielded estimates of both water quality parameters (R² = 0.94, RMSE = 8.9 µg L−1 for CHLa; R² = 0.75, RMSE = 0.22 m−1 for CDOM) that were more accurate than commonly applied waveband indices (R² = 0.83, RMSE = 13.2 µg L−1 for CHLa; R² = 0.66, RMSE = 0.25 m−1 for CDOM). Underwater hyperspectral imaging could thus facilitate future water monitoring efforts through the acquisition of consistent spectral reflectance measurements or derived water quality parameters along the water column, which has the potential to improve the link between above-surface proximal and remote sensing observations and in situ point-based water probe measurements for ground truthing or to resolve the vertical distribution of OAS

    Intercomparison of Airborne Multi-Angle Polarimeter Observations from the Polarimeter Definition Experiment (PODEX)

    Get PDF
    In early 2013, three airborne polarimeters were flown on the high altitude NASA ER-2 aircraft in California for the Polarimeter Definition Experiment (PODEX). PODEX supported the pre-formulation NASA Aerosol-Cloud-Ecosystem (ACE) mission, which calls for an imaging polarimeter in polar orbit (among other instruments) for the remote sensing of aerosols, oceans and clouds. Several polarimeter concepts exist as airborne prototypes, some of which were deployed during PODEX as a capabilities test. Two of those instruments to date have successfully produced Level 1 (georegistered, calibrated radiance and polarization) data from that campaign: the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) and the Research Scanning Polarimeter (RSP). We compared georegistered observations of a variety of scene types by these instruments to test if Level 1 products agree within stated uncertainties. Initial comparisons found radiometric agreement, but polarimetric biases beyond measurement uncertainties. After subsequent updates to calibration, georegistration, and the measurement uncertainty models, observations from the instruments now largely agree within stated uncertainties. However, the 470nm reflectance channels have a roughly +6% bias of AirMSPI relative to RSP, beyond expected measurement uncertainties. We also find that observations of dark (ocean) scenes, where polarimetric uncertainty is expected to be largest, do not agree within stated polarimetric uncertainties. Otherwise, AirMSPI and RSP observations are consistent within measurement uncertainty expectations, providing credibility for subsequent creation of Level 2 (geophysical product) data from these instruments, and comparison thereof. The techniques used in this work can also form a methodological basis for other intercomparisons, such as of the data gathered during the recent Aerosol Characterization from Polarimeter and Lidar (ACEPOL) field campaign, carried out in October and November of 2017 with four polarimeters (including AirMSPI and RSP)

    Midwall Fibrosis and Cardiac Mechanics: Rigid Body Rotation Is a Novel Marker of Disease Severity in Pediatric Primary Dilated Cardiomyopathy

    Get PDF
    Background: Midwall fibrosis (MWF) detected by late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) predicts adverse outcome in adults with dilated cardiomyopathy (DCM). Its relevance in children and adolescents is relatively unknown. Left ventricular (LV) strain, rotation and twist are important parameters of cardiac function; yet, their role in pediatric heart failure is understudied. This study aimed to evaluate MWF and cardiac mechanics in pediatric DCM. Methods: Patients ≤21 years with primary DCM were prospectively enrolled and underwent standardized CMR including LGE. All participants were categorized according to the presence or absence of MWF (MWF+ vs. MWF–). Cardiac mechanics were assessed using CMR feature tracking. Impaired LV twist with apex and base rotating in the same direction was termed rigid body rotation (RBR). Results: In total, 17 patients (median age 11.2 years) were included. MWF was present in seven patients (41%). Median N-terminal pro brain natriuretic peptide (NT-proBNP) was higher (5,959 vs. 242 pg/ml, p = 0.887) and LV ejection fraction (LVEF) lower (28 vs. 39%, p = 0.536) in MWF+ vs. MWF– patients, yet differences were not statistically significant. MWF+ patients had reduced global longitudinal (GLS), circumferential (GCS) and radial strain (GRS), again without statistical significance (p = 0.713, 0.492 and 1.000, respectively). A relationship between MWF and adverse outcome was not seen (p = 0.637). RBR was more common in MWF+ (67 vs. 50%), and was associated with the occurrence of adverse events (p = 0.041). Patients with RBR more frequently were in higher New York Heart Association classes (p = 0.035), had elevated NT-proBNP levels (p = 0.002) and higher need for catecholamines (p = 0.001). RBR was related to reduced GLS (p = 0.008), GCS (p = 0.031), GRS (p = 0.012), LV twist (p = 0.008), peak apical rotation (p < 0.001), and LVEF (p = 0.001), elevated LV end-diastolic volume (p = 0.023) and LV end-systolic volume (p = 0.003), and lower right ventricular stroke volume (p = 0.023). Conclusions: MWF was common, but failed to predict heart failure. RBR was associated with clinical and biventricular functional signs of heart failure as well as the occurrence of adverse events. Our findings suggest that RBR may predict outcomes and may serve as a novel marker of disease severity in pediatric DCM. Clinical Trial Registration: https://clinicaltrials.gov/, identifier: NCT03572569

    Impact of a Low Severity Fire on Soil Organic Carbon and Nitrogen

    Get PDF
    Slash and burn practices are widely used around the globe with different degrees of success which are mostly related to the impact of fire on soil properties. In Japan slash and burn practises, known as Yakihata, have a long history and are still used in Yamagata Prefecture today. The purpose of this study was to determine the impact of a low severity controlled fire underneath Japanese cedar (Cryptomeria japonica) on brown forest soil (Cambisol). Japanese Cedar is the dominant species among plantations in Japan. We measured organic carbon and nitrogen content as well as changes in carbon (δ13C) and nitrogen (δ15N) stable isotope composition in a steep west facing slope under heavy precipitation (~2600 mm/a) and heavy snowfall (~3 to 4 m/a). The accumulation of Ctotal and Ntotal at the bottom of the slopes was remarkably higher at the slash and burned site than in the control forest site. After slash and burn δ15N isotopes in the slope in general became significantly lighter than in the control forest while the δ13C did not show any significant difference between the two sites except at the bottom of the slopes where δ13C was heavier in the forest. The results show that Ctotal and Ntotal values as well as the isotopes ratios of C and N change with decreasing elevation in the forest as well as in the burned site being consistent with leaching and erosion. The changes in soil nitrogen and carbon isotopes at the bottom of the slope appear to be related to the transport of material with different isotopic composition from the upper slope. The effect of the low severity fire (as part of the slash and burn practice) on soil organic carbon and nitrogen movement was enhanced by the steepness of the slopes and the high precipitation of Shonai region
    • …
    corecore