59 research outputs found

    Adult-Onset Gilles de la Tourette Syndrome: Psychogenic or Organic? The Challenge of Abnormal Neurophysiological Findings

    Get PDF
    Gilles de la Tourette syndrome (GTS) is characterized by multiple motor and vocal tics. Adult-onset cases are rare and may be due to “reactivation” of childhood tics, or secondary to psychiatric or genetic diseases, or due to central nervous system lesions of different etiologies. Late-onset psychogenic motor/vocal tics resembling GTS have been described. Neurophysiology may serve to differentiate organic from functional GTS. Altered blink reflex pre-pulse inhibition (BR-PPI), blink reflex excitability recovery (BR-ERC), and short-interval intracortical inhibition (SICI) have been described in GTS. We report a 48-years-old male, who developed numerous motor/vocal tics 2 months after sustaining non-commotional craniofacial trauma in a car accident. Both his father and brother had died earlier in car crashes. He presented with blepharospasm-like forced lid closure, forceful lip pursing, noisy suction movements, and deep moaning sounds, occurring in variable combinations, without warning symptoms or internal “urge.” Tics showed low distractibility and these increased with attention. Standard magnetic resonance imaging, electroencephalography, and evoked potentials were unremarkable. Neuropsychology diagnosed moderately impaired intellect, attention, and executive functions. Psychiatric assessment revealed somatization disorder and generalized anxiety. BR-PPI was unremarkable, while BR-ERC was enhanced, even showing facilitation at short intervals. SICI was markedly reduced at 1 and 3 ms and intracortical facilitation (ICF) was enhanced at 10 ms. The patient fulfilled Fahn and Williams' diagnostic criteria for a psychogenic movement disorder. Neurophysiology, however, documented hyperexcitability of motor cortex and brainstem. We suggest that—similar to what has been reported in psychogenic dystonia—a pre-existing predisposition may have led to the functional hyperkinetic disorder in response to severe psychic stress

    Ipsilateral motor evoked potentials in a patient with unihemispheric cortical atrophy due to Rasmussen encephalitis

    Get PDF
    The role of the ipsilaterally descending motor pathways in the recovery mechanisms after unilateral hemispheric damage is still poorly understood. Motor output reorganization was investigated in a 56-year-old male patient with acquired unilateral hemispheric atrophy due to Rasmussen encephalitis. In particular, the ipsilateral corticospinal pathways were explored using focal transcranial magnetic stimulation. In the first dorsal interosseous and wrist extensors muscles, the median amplitudes of the ipsilateral motor evoked potentials induced by transcranial magnetic stimulation in the patient were higher than those of 10 age-matched healthy control subjects. In the biceps brachii muscle, the median amplitudes of the ipsilateral motor evoked potentials were the second largest in the patient compared to the controls. This study demonstrated a reinforcement of ipsilateral motor projections from the unaffected motor cortex to the hemiparetic hand in a subject with acquired unihemispheric cortical damage

    Usefulness of EEG Techniques in Distinguishing Frontotemporal Dementia from Alzheimer's Disease and Other Dementias

    Get PDF
    The clinical distinction of frontotemporal dementia (FTD) and Alzheimer's disease (AD) may be difficult. In this narrative review we summarize and discuss the most relevant electroencephalography (EEG) studies which have been applied to demented patients with the aim of distinguishing the various types of cognitive impairment. EEG studies revealed that patients at an early stage of FTD or AD displayed different patterns in the cortical localization of oscillatory activity across different frequency bands and in functional connectivity. Both classical EEG spectral analysis and EEG topography analysis are able to differentiate the different dementias at group level. The combination of standardized low-resolution brain electromagnetic tomography (sLORETA) and power parameters seems to improve the sensitivity, but spectral and connectivity biomarkers able to differentiate single patients have not yet been identified. The promising EEG findings should be replicated in larger studies, but could represent an additional useful, noninvasive, and reproducible diagnostic tool for clinical practice

    Experimental Protocol to Test Explicit Motor Learning–Cerebellar Theta Burst Stimulation

    Get PDF
    Implicit and explicit motor learning processes work interactively in everyday life to promote the creation of highly automatized motor behaviors. The cerebellum is crucial for motor sequence learning and adaptation, as it contributes to the error correction and to sensorimotor integration of on-going actions. A non-invasive cerebellar stimulation has been demonstrated to modulate implicit motor learning and adaptation. The present study aimed to explore the potential role of cerebellar theta burst stimulation (TBS) in modulating explicit motor learning and adaptation, in healthy subjects. Cerebellar TBS will be applied immediately before the learning phase of a computerized task based on a modified Serial Reaction Time Task (SRTT) paradigm. Here, we present a study protocol aimed at evaluating the behavioral effects of continuous (cTBS), intermittent TBS (iTBS), or sham Theta Burst Stimulation (TBS) on four different conditions: learning, adaptation, delayed recall and re-adaptation of SRTT. We are confident to find modulation of SRTT performance induced by cerebellar TBS, in particular, processing acceleration and reduction of error in all the conditions induced by cerebellar iTBS, as already known for implicit processes. On the other hand, we expect that cerebellar cTBS could induce opposite effects. Results from this protocol are supposed to advance the knowledge about the role of non-invasive cerebellar modulation in neurorehabilitation, providing clinicians with useful data for further exploiting this technique in different clinical conditions

    Un luogo sospeso nel tempo - progetto di restauro e valorizzazione per Villa Cesarini e il suo parco.

    Get PDF
    Situata nel comune di Corinaldo (AN), questa dimora signorile viene edificata su precedenti resti dal botanico Paolo Spadoni attorno alla metà del Settecento. Passata poi in mano a diversi proprietari, di cui l’ultimo risulta essere il Conte Giacomo Cesarini Romaldi, assume attorno agli inizi del novecento l’attuale aspetto. L’intero sistema si compone di diverse parti: la residenza del signore, la chiesa, la limonaia, la stalla, la rimessa delle carrozze e la casa del custode, connessi tra loro dal grande parco di circa due ettari di superficie, all’interno del quale sono disseminati innumerevoli manufatti, grotte e reperti archeologici. La presente tesi si pone come obiettivo quello di proporre un progetto di restauro che risponda alla richiesta del luogo di essere salvato; in esso sono stati riconosciuti dei valori che vanno necessariamente recuperati e trasmessi

    Modulation of exteroceptive electromyographic responses in defensive peripersonal space

    Get PDF
    The cutaneous silent period (CSP) to noxious finger stimulation constitutes a robust spinal inhibitory reflex that protects the hand from injury. In certain conditions, spinal inhibition is interrupted by a brief burst-like electromyographic activity, dividing the CSP into two inhibitory phases (I1 and I2). This excitatory component is termed long-loop reflex (LLR) and is presumed to be transcortical in origin. Efficient defense from environmental threats requires sensorimotor integration between multimodal sensory afferents and planning of defensive movements. In the defensive peripersonal space (DPPS) immediately surrounding the body, we interact with objects and persons with increased alertness. We investigated whether CSP differs when the stimulated hand is in the DPPS of the face compared with a distant position. Furthermore, we investigated the possible role of vision in CSP modulation. Fifteen healthy volunteers underwent CSP testing with the handheld either within 5 cm from the nose (near) or away from the body (far). Recordings were obtained from first dorsal interosseous muscle following index (D2) or little finger (D5) stimulation with varying intensities. A subgroup of subjects underwent CSP recordings in near and far conditions, both with eyes open and with eyes closed. No inhibitory CSP parameter differed between stimulation in near and far conditions. LLRs occurring following D2 stimulation were significantly larger in near than far conditions at all stimulus intensities, irrespective of subjects seeing their hand. Similar to the hand-blink reflex, spinally organized protective reflexes may be modulated by corticospinal facilitatory input when the hand enters the DPPS of the face. NEW & NOTEWORTHY The present findings demonstrate for the first time that a spinally organized protective reflex, the cutaneous silent period (CSP), may be modulated by top-down corticospinal facilitatory input when the stimulated hand enters the defensive peripersonal space (DPPS) of the face. In particular, the cortically mediated excitatory long-loop reflex, which may interrupt the CSP, is facilitated when the stimulated hand is in the DPPS, irrespective of visual control over the hand. No spinal inhibitory CSP parameter differs significantly in or outside the DPPS
    • …
    corecore