340 research outputs found

    Viral diversity and prevalence gradients in North American Pacific Coast grasslands

    Get PDF
    Host-pathogen interactions may be governed by the number of pathogens coexisting within an individual host (i.e., coinfection) and among different hosts, although most sampling in natural systems focuses on the prevalence of single pathogens and/or single hosts. We measured the prevalence of four barley and cereal yellow dwarf viruses (B/CYDVs) in three grass species at 26 natural grasslands along a 2000-km latitudinal gradient in the western United States and Canada. B/CYDVs are aphid-vectored RNA viruses that cause one of the most prevalent of all plant diseases worldwide. Pathogen prevalence and coinfection were uncorrelated, suggesting that different forces likely drive them. Coinfection, the number of viruses in a single infected host (alpha diversity), did not differ among host species but increased roughly twofold across our latitudinal transect. This increase in coinfection corresponded with a decline in among-host pathogen turnover (beta diversity), suggesting that B/CYDVs in northern populations experience less transmission limitation than in southern populations. In contrast to pathogen diversity, pathogen prevalence was a function of host identity as well as biotic and abiotic environmental conditions. Prevalence declined with precipitation and increased with soil nitrate concentration, an important limiting nutrient for hosts and vectors of B/CYDVs. This work demonstrates the need for further studies of processes governing coinfection, and the utility of applying theory developed to explain diversity in communities of free-living organisms to pathogen systems

    The synergistic response of primary production in grasslands to combined nitrogen and phosphorus addition is caused by increased nutrient uptake and retention

    Get PDF
    Background and aims A synergistic response of aboveground plant biomass production to combined nitrogen (N) and phosphorus (P) addition has been observed in many ecosystems, but the underlying mechanisms and their relative importance are not well known. We aimed at evaluating several mechanisms that could potentially cause the synergistic growth response, such as changes in plant biomass allocation, increased N and P uptake by plants, and enhanced ecosystem nutrient retention. Methods We studied five grasslands located in Europe and the USA that are subjected to an element addition experiment composed of four treatments: control (no element addition), N addition, P addition, combined NP addition. Results Combined NP addition increased the total plant N stocks by 1.47 times compared to the N treatment, while total plant P stocks were 1.62 times higher in NP than in single P addition. Further, higher N uptake by plants in response to combined NP addition was associated with reduced N losses from the soil (evaluated based on soil δ15N) compared to N addition alone, indicating a higher ecosystem N retention. In contrast, the synergistic growth response was not associated with significant changes in plant resource allocation. Conclusions Our results demonstrate that the commonly observed synergistic effect of NP addition on aboveground biomass production in grasslands is caused by enhanced N uptake compared to single N addition, and increased P uptake compared to single P addition, which is associated with a higher N and P retention in the ecosystem

    The synergistic response of primary production in grasslands to combined nitrogen and phosphorus addition is caused by increased nutrient uptake and retention

    Get PDF
    Background and aimsA synergistic response of aboveground plant biomass production to combined nitrogen (N) and phosphorus (P) addition has been observed in many ecosystems, but the underlying mechanisms and their relative importance are not well known. We aimed at evaluating several mechanisms that could potentially cause the synergistic growth response, such as changes in plant biomass allocation, increased N and P uptake by plants, and enhanced ecosystem nutrient retention.MethodsWe studied five grasslands located in Europe and the USA that are subjected to an element addition experiment composed of four treatments: control (no element addition), N addition, P addition, combined NP addition.ResultsCombined NP addition increased the total plant N stocks by 1.47 times compared to the N treatment, while total plant P stocks were 1.62 times higher in NP than in single P addition. Further, higher N uptake by plants in response to combined NP addition was associated with reduced N losses from the soil (evaluated based on soil delta N-15) compared to N addition alone, indicating a higher ecosystem N retention. In contrast, the synergistic growth response was not associated with significant changes in plant resource allocation.ConclusionsOur results demonstrate that the commonly observed synergistic effect of NP addition on aboveground biomass production in grasslands is caused by enhanced N uptake compared to single N addition, and increased P uptake compared to single P addition, which is associated with a higher N and P retention in the ecosystem

    Opposing community assembly patterns for dominant and non-dominant plant species in herbaceous ecosystems globally

    Get PDF
    Biotic and abiotic factors interact with dominant plants—the locally most frequent or with the largest coverage—and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co-dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (<50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities.EEA Santa CruzFil: Arnillas, Carlos Alberto. University of Toronto Scarborough. Department of Physical and Environmental Sciences; Canadá.Fil: Borer, Elizabeth T. University of Minnesota; Estados UnidosFil: Seabloom, Eric W. University of Minnesota; Estados UnidosFil: Alberti, Juan. Universidad Nacional de Mar del Plata. Instituto de Investigaciones Marinas y Costeras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Marinas y Costeras; Argentina.Fil: Baez, Selene. Escuela Politécnica Nacional. Department of Biology; Ecuador.Fil: Bakker, Jonathan D. University of Washington. School of Environmental and Forest Sciences; Estados UnidosFil: Boughton, Elizabeth H. Archbold Biological Station. Venus, Florida; Estados UnidosFil: Buckley, Yvonne M. Trinity College Dublin. School of Natural Sciences, Zoology; IrlandaFil: Bugalho, Miguel Nuno. University of Lisbon. Centre for Applied Ecology Prof. Baeta Neves (CEABN-InBIO). School of Agriculture; Portugal.Fil: Donohue, Ian. Trinity College Dublin. School of Natural Sciences, Zoology; IrlandaFil: Dwyer, John. University of Queensland. School of Biological Sciences; Australia.Fil: Firn, Jennifer. Queensland University of Technology (QUT); Australia.Fil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Cadotte, Marc W. University of Toronto Scarborough. Department of Biological Sciences; Canadá.Fil: Cadotte, Marc W. University of Toronto. Department of Ecology and Evolutionary Biology; Canadá
    • …
    corecore