6 research outputs found

    Intercomparison of low- and high-resolution infrared spectrometers for ground-based solar remote sensing measurements of total column concentrations of CO2, CH4, and CO

    Get PDF
    The Total Carbon Column Observing Network (TCCON) is the baseline ground-based network of instruments that record solar absorption spectra from which accurate and precise column-averaged dry-air mole fractions of CO2_{2} (XCO2_{2}), CH4_{4} (XCH4_{4}), CO (XCO), and other gases are retrieved. The TCCON data have been widely used for carbon cycle science and validation of satellites measuring greenhouse gas concentrations globally. The number of stations in the network (currently about 25) is limited and has a very uneven geographical coverage: the stations in the Northern Hemisphere are distributed mostly in North America, Europe, and Japan, and only 20 % of the stations are located in the Southern Hemisphere, leaving gaps in the global coverage. A denser distribution of ground-based solar absorption measurements is needed to improve the representativeness of the measurement data for various atmospheric conditions (humid, dry, polluted, presence of aerosol), various surface conditions such as high albedo (>0.4) and very low albedo, and a larger latitudinal distribution. More stations in the Southern Hemisphere are also needed, but a further expansion of the network is limited by its costs and logistical requirements. For this reason, several groups are investigating supplemental portable low-cost instruments. The European Space Agency (ESA) funded campaign Fiducial Reference Measurements for Ground-Based Infrared Greenhouse Gas Observations (FRM4GHG) at the Sodankylä TCCON site in northern Finland aims to characterise the assessment of several low-cost portable instruments for precise solar absorption measurements of XCO2_{2}, XCH4_{4}, and XCO. The test instruments under investigation are three Fourier transform spectrometers (FTSs): a Bruker EM27/SUN, a Bruker IRcube, and a Bruker Vertex70, as well as a laser heterodyne spectroradiometer (LHR) developed by the UK Rutherford Appleton Laboratory. All four remote sensing instruments performed measurements simultaneously next to the reference TCCON instrument, a Bruker IFS 125HR, for a full year in 2017. The TCCON FTS was operated in its normal high-resolution mode (TCCON data set) and in a special low-resolution mode (HR125LR data set), similar to the portable spectrometers. The remote sensing measurements are complemented by regular AirCore launches performed from the same site. They provide in situ vertical profiles of the target gas concentrations as auxiliary reference data for the column retrievals, which are traceable to the WMO SI standards. The reference measurements performed with the Bruker IFS 125HR were found to be affected by non-linearity of the indium gallium arsenide (InGaAs) detector. Therefore, a non-linearity correction of the 125HR data was performed for the whole campaign period and compared with the test instruments and AirCore. The non-linearity-corrected data (TCCONmod data set) show a better match with the test instruments and AirCore data compared to the non-corrected reference data. The time series, the bias relative to the reference instrument and its scatter, and the seasonal and the day-to-day variations of the target gases are shown and discussed. The comparisons with the HR125LR data set gave a useful analysis of the resolution-dependent effects on the target gas retrieval. The solar zenith angle dependence of the retrievals is shown and discussed. The intercomparison results show that the LHR data have a large scatter and biases with a strong diurnal variation relative to the TCCON and other FTS instruments. The LHR is a new instrument under development, and these biases are currently being investigated and addressed. The campaign helped to characterise and identify instrumental biases and possibly retrieval biases, which are currently under investigation. Further improvements of the instrument are ongoing. The EM27/SUN, the IRcube, the modified Vertex70, and the HR125LR provided stable and precise measurements of the target gases during the campaign with quantified small biases. The bias dependence on the humidity along the measurement line of sight has been investigated and no dependence was found. These three portable low-resolution FTS instruments are suitable to be used for campaign deployment or long-term measurements from any site and offer the ability to complement the TCCON and expand the global coverage of ground-based reference measurements of the target gases

    Intercomparison of low- and high-resolution infrared spectrometers for ground-based solar remote sensing measurements of total column concentrations of CO2, CH4, and CO

    Get PDF
    The Total Carbon Column Observing Network (TCCON) is the baseline ground-based network of instruments that record solar absorption spectra from which accurate and precise column-averaged dry-air mole fractions of CO2_{2} (XCO2_{2}), CH4_{4} (XCH4_{4}), CO (XCO), and other gases are retrieved. The TCCON data have been widely used for carbon cycle science and validation of satellites measuring greenhouse gas concentrations globally. The number of stations in the network (currently about 25) is limited and has a very uneven geographical coverage: the stations in the Northern Hemisphere are distributed mostly in North America, Europe, and Japan, and only 20 % of the stations are located in the Southern Hemisphere, leaving gaps in the global coverage. A denser distribution of ground-based solar absorption measurements is needed to improve the representativeness of the measurement data for various atmospheric conditions (humid, dry, polluted, presence of aerosol), various surface conditions such as high albedo (>0.4) and very low albedo, and a larger latitudinal distribution. More stations in the Southern Hemisphere are also needed, but a further expansion of the network is limited by its costs and logistical requirements. For this reason, several groups are investigating supplemental portable low-cost instruments. The European Space Agency (ESA) funded campaign Fiducial Reference Measurements for Ground-Based Infrared Greenhouse Gas Observations (FRM4GHG) at the Sodankylä TCCON site in northern Finland aims to characterise the assessment of several low-cost portable instruments for precise solar absorption measurements of XCO2_{2}, XCH4_{4}, and XCO. The test instruments under investigation are three Fourier transform spectrometers (FTSs): a Bruker EM27/SUN, a Bruker IRcube, and a Bruker Vertex70, as well as a laser heterodyne spectroradiometer (LHR) developed by the UK Rutherford Appleton Laboratory. All four remote sensing instruments performed measurements simultaneously next to the reference TCCON instrument, a Bruker IFS 125HR, for a full year in 2017. The TCCON FTS was operated in its normal high-resolution mode (TCCON data set) and in a special low-resolution mode (HR125LR data set), similar to the portable spectrometers. The remote sensing measurements are complemented by regular AirCore launches performed from the same site. They provide in situ vertical profiles of the target gas concentrations as auxiliary reference data for the column retrievals, which are traceable to the WMO SI standards. The reference measurements performed with the Bruker IFS 125HR were found to be affected by non-linearity of the indium gallium arsenide (InGaAs) detector. Therefore, a non-linearity correction of the 125HR data was performed for the whole campaign period and compared with the test instruments and AirCore. The non-linearity-corrected data (TCCONmod data set) show a better match with the test instruments and AirCore data compared to the non-corrected reference data. The time series, the bias relative to the reference instrument and its scatter, and the seasonal and the day-to-day variations of the target gases are shown and discussed. The comparisons with the HR125LR data set gave a useful analysis of the resolution-dependent effects on the target gas retrieval. The solar zenith angle dependence of the retrievals is shown and discussed. The intercomparison results show that the LHR data have a large scatter and biases with a strong diurnal variation relative to the TCCON and other FTS instruments. The LHR is a new instrument under development, and these biases are currently being investigated and addressed. The campaign helped to characterise and identify instrumental biases and possibly retrieval biases, which are currently under investigation. Further improvements of the instrument are ongoing. The EM27/SUN, the IRcube, the modified Vertex70, and the HR125LR provided stable and precise measurements of the target gases during the campaign with quantified small biases. The bias dependence on the humidity along the measurement line of sight has been investigated and no dependence was found. These three portable low-resolution FTS instruments are suitable to be used for campaign deployment or long-term measurements from any site and offer the ability to complement the TCCON and expand the global coverage of ground-based reference measurements of the target gases

    Intercomparison of low- and high-resolution infrared spectrometers for ground-based solar remote sensing measurements of total column concentrations of CO2, CH4, and CO

    Get PDF
    © Author(s) 2020. The Total Carbon Column Observing Network (TCCON) is the baseline ground-based network of instruments that record solar absorption spectra from which accurate and precise column-averaged dry-air mole fractions of CO2 (XCO2), CH4(XCH4), CO (XCO), and other gases are retrieved. The TCCON data have been widely used for carbon cycle science and validation of satellites measuring greenhouse gas concentrations globally. The number of stations in the network (currently about 25) is limited and has a very uneven geographical coverage: the stations in the Northern Hemisphere are distributed mostly in North America, Europe, and Japan, and only 20% of the stations are located in the Southern Hemisphere, leaving gaps in the global coverage. A denser distribution of ground-based solar absorption measurements is needed to improve the representativeness of the measurement data for various atmospheric conditions (humid, dry, polluted, presence of aerosol), various surface conditions such as high albedo (\u3e 0:4) and very low albedo, and a larger latitudinal distribution. More stations in the Southern Hemisphere are also needed, but a further expansion of the network is limited by its costs and logistical requirements. For this reason, several groups are investigating supplemental portable low-cost instruments. The European Space Agency (ESA) funded campaign Fiducial Reference Measurements for Ground-Based Infrared Greenhouse Gas Observations (FRM4GHG) at the Sodankylä TCCON site in northern Finland aims to characterise the assessment of several low-cost portable instruments for precise solar absorption measurements of XCO2, XCH4, and XCO. The test instruments under investigation are three Fourier transform spectrometers (FTSs): a Bruker EM27/SUN, a Bruker IRcube, and a Bruker Vertex70, as well as a laser heterodyne spectroradiometer (LHR) developed by the UK Rutherford Appleton Laboratory. All four remote sensing instruments performed measurements simultaneously next to the reference TCCON instrument, a Bruker IFS 125HR, for a full year in 2017. The TCCON FTS was operated in its normal high-resolution mode (TCCON data set) and in a special low-resolution mode (HR125LR data set), similar to the portable spectrometers. The remote sensing measurements are complemented by regular AirCore launches performed from the same site. They provide in situ vertical profiles of the target gas concentrations as auxiliary reference data for the column retrievals, which are traceable to the WMO SI standards. The reference measurements performed with the Bruker IFS 125HR were found to be affected by non-linearity of the indium gallium arsenide (InGaAs) detector. Therefore, a non-linearity correction of the 125HR data was performed for the whole campaign period and compared with the test instruments and AirCore. The non-linearity-corrected data (TCCONmod data set) show a better match with the test instruments and AirCore data compared to the non-corrected reference data. The time series, the bias relative to the reference instrument and its scatter, and the seasonal and the day-to-day variations of the target gases are shown and discussed. The comparisons with the HR125LR data set gave a useful analysis of the resolution-dependent effects on the target gas retrieval. The solar zenith angle dependence of the retrievals is shown and discussed. The intercomparison results show that the LHR data have a large scatter and biases with a strong diurnal variation relative to the TCCON and other FTS instruments. The LHR is a new instrument under development, and these biases are currently being investigated and addressed. The campaign helped to characterise and identify instrumental biases and possibly retrieval biases, which are currently under investigation. Further improvements of the instrument are ongoing. The EM27/SUN, the IRcube, the modified Vertex70, and the HR125LR provided stable and precise measurements of the target gases during the campaign with quantified small biases. The bias dependence on the humidity along the measurement line of sight has been investigated and no dependence was found. These three portable low-resolution FTS instruments are suitable to be used for campaign deployment or long-term measurements from any site and offer the ability to complement the TCCON and expand the global coverage of ground-based reference measurements of the target gases

    New TCCON compliant measurements at Ile de La Réunio

    No full text
    International audienceSince 2002, ground-based Fourier transform solar absorption measurements with a Bruker 120M spectrometer have been carried out at St Denis, Ile de La Réunion. These measurements contribute to the database of atmospheric trace gas concentrations of the Network for the Detection of Atmospheric Composition Change (NDACC). Ile de La Réunion is an island situated in the southern hemisphere subtropics (21 S, 55 E) in the Indian Ocean, east of Madagascar. It undergoes strong influences of the biomass burning in Madagascar and Africa in the months September to December. St Denis is situated at low altitude (50 masl), close to the ocean. In 2011, we will start the operation of a Bruker 125HR spectrometer at the same site, for making high precision measurements of greenhouse gases (CO2, CH4, N2O) that are compliant with the requirements of the Total Carbon Column Observing Network (TCCON). At start, the Bruker 125HR and the Bruker120M will be operated in parallel. From 2012 onwards, with the opening of the new NDACC infrastructure at the mountain site Maido (2100 masl), we will install a second Bruker 125HR at this high mountain site, for the continuation of regular NDACC measurements and for performing differential measurements on a campaign basis. Both experiments will be carried out using BARCOS, the Bruker Automatic and Remote Control System (Neefs et al., 2007), in a collaboration between the Belgian Institute for Space Aeronomy (BIRA-IASB) and the Laboratoire de l'Atmosphère et des Cyclones (LACy) de l'Université de La Réunion. In situ surface concentration measurements of greenhouse gases will be performed with a PICARRO instrument which is already operational at the sit

    Observations of halogens, CO, CH4, and H2CO at Ile de La Réunion from ground-based FTIR and MAXDOAS campaign measurements

    Full text link
    Ile de La Réunion is a complementary site in the Network for the Detection of Atmospheric Composition Change (NDACC), situated in the southern tropics, at 21°S, 55°E. In support of a better understanding of atmospheric chemistry and physics above tropical regions, we have implemented new ground-based MAX-DOAS (multi-axis DOAS) and FTIR (Fourier transform infrared) observations at this site, on a campaign basis since 2002. At present, we have data from 2002 (month of October), 2004 (August to October) and 2007 (end of May until the end of October). Additional campaigns are planned until the availability of a new infrastructure for permanent observations at the Maido (~ 2000 masl), around 2010. Here, we report on the available time series for a number of tropospheric species (CO, H2CO and CH4,) and stratospheric halogen species, comparisons between MAX-DOAS and FTIR data of H2CO, and comparisons of ground-based and satellite data

    Observations of CH4, CH3D and H2CO at Ile de La Réunion from ground-based FTIR and MAXDOAS campaign measurements

    Full text link
    Ile de La Réunion (21°S, 55°E) is candidate to become a primary station the ground-based Network for the Detection of Atmospheric Composition Change (NDACC) which was formed to provide long-term monitoring of atmospheric trace gases at globally distributed sites. Ground-based network data are also very valuable for the validation of satellite data, such as SCIAMACHY, ACE-FTS and IASI. Up to now, only a few NDACC stations are located in the Southern Hemisphere, and none of them is at subtropical latitude. Three campaigns of FTIR measurements were made at the Ile de La Réunion in preparation of a near future permanent installation, namely in October 2002, from August to October 2004, and from May to November 2007. A UV-visible Multi-Axis DOAS (MAXDOAS) instrument was operated at the same site from July 2004 to June 2005. The inversion algorithms for both the MAXDOAS and FTIR spectral data analyses use the Optimal Estimation Method to derive information about the vertical distribution of the target gases. We will present the vertical profiles and total columns of the greenhouse gas CH4 and its isotopologue CH3D, obtained from the FTIR measurements. For the latter, the number of degrees of freedom for signal is close to one, limiting the information to the total column abundance. Early comparisons with correlative measurements from satellite data will be discussed. Formaldehyde (H2CO) is a source of HOx and an indicator for biogenic emissions, biomass burning, and anthropogenic pollution. It can be measured by both the FTIR and UV-Visible MAXDOAS instruments. The total columns obtained by the two techniques in the common period of measurements August-October 2004 will be discussed. We will also show the comparisons of the time series for formaldehyde from both instruments with correlative SCIAMACHY data above La Réunion
    corecore