53 research outputs found
On the integrability of a new lattice equation found by multiple scale analysis
In this paper we discuss the integrability properties of a nonlinear partial
difference equation on the square obtained by the multiple scale integrability
test from a class of multilinear dispersive equations defined on a four points
lattice
A discrete linearizability test based on multiscale analysis
In this paper we consider the classification of dispersive linearizable
partial difference equations defined on a quad-graph by the multiple scale
reduction around their harmonic solution. We show that the A_1, A_2 and A_3
linearizability conditions restrain the number of the parameters which enter
into the equation. A subclass of the equations which pass the A_3
C-integrability conditions can be linearized by a Mobius transformation
Four Points Linearizable Lattice Schemes
We provide conditions for a lattice scheme defined on a four points lattice
to be linearizable by a point transformation. We apply the obtained conditions
to a symmetry preserving difference scheme for the potential Burgers introduced
by Dorodnitsyn \cite{db} and show that it is not linearizable
A discrete integrability test based on multiscale analysis
In this article we present the results obtained applying the multiple scale
expansion up to the order \epsilon^6 to a dispersive multilinear class of
equations on a square lattice depending on 13 parameters. We show that the
integrability conditions given by the multiple scale expansion give rise to 4
nonlinear equations, 3 of which are new, depending at most on 2 parameters and
containing integrable sub cases. Moreover at least one sub case provides an
example of a new integrable system
A discrete linearizability test based on multiscale analysis
In this paper we consider the classification of dispersive linearizable partial difference equations defined on a quad-graph by the multiple scale reduction around their harmonic solution. We show that the A1, A2 and A3 linearizability conditions restrain the number of the parameters which enter into the equation. A subclass of the equations which pass the A3 C-integrability conditions can be linearized by a Möbius transformation
On the Integrability of the Discrete Nonlinear Schroedinger Equation
In this letter we present an analytic evidence of the non-integrability of
the discrete nonlinear Schroedinger equation, a well-known discrete evolution
equation which has been obtained in various contexts of physics and biology. We
use a reductive perturbation technique to show an obstruction to its
integrability.Comment: 4 pages, accepted in EP
Integrability of Differential-Difference Equations with Discrete Kinks
In this article we discuss a series of models introduced by Barashenkov,
Oxtoby and Pelinovsky to describe some discrete approximations to the \phi^4
theory which preserve travelling kink solutions. We show, by applying the
multiple scale test that they have some integrability properties as they pass
the A_1 and A_2 conditions. However they are not integrable as they fail the
A_3 conditions.Comment: submitted to the Proceedings of the workshop "Nonlinear Physics:
Theory and Experiment.VI" in a special issue di Theoretical and Mathematical
Physic
Multiscale expansions of difference equations in the small lattice spacing regime, and a vicinity and integrability test. I
We propose an algorithmic procedure i) to study the ``distance'' between an
integrable PDE and any discretization of it, in the small lattice spacing
epsilon regime, and, at the same time, ii) to test the (asymptotic)
integrability properties of such discretization. This method should provide, in
particular, useful and concrete informations on how good is any numerical
scheme used to integrate a given integrable PDE. The procedure, illustrated on
a fairly general 10-parameter family of discretizations of the nonlinear
Schroedinger equation, consists of the following three steps: i) the
construction of the continuous multiscale expansion of a generic solution of
the discrete system at all orders in epsilon, following the Degasperis -
Manakov - Santini procedure; ii) the application, to such expansion, of the
Degasperis - Procesi (DP) integrability test, to test the asymptotic
integrability properties of the discrete system and its ``distance'' from its
continuous limit; iii) the use of the main output of the DP test to construct
infinitely many approximate symmetries and constants of motion of the discrete
system, through novel and simple formulas.Comment: 34 pages, no figur
Classification of discrete systems on a square lattice
We consider the classification up to a Möbius transformation of real linearizable and integrable partial difference equations with dispersion defined on a square lattice by the multiscale reduction around their harmonic solution. We show that the A1, A2, and A3 linearizability and integrability conditions constrain the number of parameters in the equation, but these conditions are insufficient for a complete characterization of the subclass of multilinear equations on a square lattice
Multiscale reduction of discrete nonlinear Schroedinger equations
We use a discrete multiscale analysis to study the asymptotic integrability
of differential-difference equations. In particular, we show that multiscale
perturbation techniques provide an analytic tool to derive necessary
integrability conditions for two well-known discretizations of the nonlinear
Schroedinger equation.Comment: 12 page
- …
