53 research outputs found

    On the integrability of a new lattice equation found by multiple scale analysis

    Full text link
    In this paper we discuss the integrability properties of a nonlinear partial difference equation on the square obtained by the multiple scale integrability test from a class of multilinear dispersive equations defined on a four points lattice

    A discrete linearizability test based on multiscale analysis

    Get PDF
    In this paper we consider the classification of dispersive linearizable partial difference equations defined on a quad-graph by the multiple scale reduction around their harmonic solution. We show that the A_1, A_2 and A_3 linearizability conditions restrain the number of the parameters which enter into the equation. A subclass of the equations which pass the A_3 C-integrability conditions can be linearized by a Mobius transformation

    Four Points Linearizable Lattice Schemes

    Full text link
    We provide conditions for a lattice scheme defined on a four points lattice to be linearizable by a point transformation. We apply the obtained conditions to a symmetry preserving difference scheme for the potential Burgers introduced by Dorodnitsyn \cite{db} and show that it is not linearizable

    A discrete integrability test based on multiscale analysis

    Full text link
    In this article we present the results obtained applying the multiple scale expansion up to the order \epsilon^6 to a dispersive multilinear class of equations on a square lattice depending on 13 parameters. We show that the integrability conditions given by the multiple scale expansion give rise to 4 nonlinear equations, 3 of which are new, depending at most on 2 parameters and containing integrable sub cases. Moreover at least one sub case provides an example of a new integrable system

    A discrete linearizability test based on multiscale analysis

    Get PDF
    In this paper we consider the classification of dispersive linearizable partial difference equations defined on a quad-graph by the multiple scale reduction around their harmonic solution. We show that the A1, A2 and A3 linearizability conditions restrain the number of the parameters which enter into the equation. A subclass of the equations which pass the A3 C-integrability conditions can be linearized by a Möbius transformation

    On the Integrability of the Discrete Nonlinear Schroedinger Equation

    Full text link
    In this letter we present an analytic evidence of the non-integrability of the discrete nonlinear Schroedinger equation, a well-known discrete evolution equation which has been obtained in various contexts of physics and biology. We use a reductive perturbation technique to show an obstruction to its integrability.Comment: 4 pages, accepted in EP

    Integrability of Differential-Difference Equations with Discrete Kinks

    Full text link
    In this article we discuss a series of models introduced by Barashenkov, Oxtoby and Pelinovsky to describe some discrete approximations to the \phi^4 theory which preserve travelling kink solutions. We show, by applying the multiple scale test that they have some integrability properties as they pass the A_1 and A_2 conditions. However they are not integrable as they fail the A_3 conditions.Comment: submitted to the Proceedings of the workshop "Nonlinear Physics: Theory and Experiment.VI" in a special issue di Theoretical and Mathematical Physic

    Multiscale expansions of difference equations in the small lattice spacing regime, and a vicinity and integrability test. I

    Full text link
    We propose an algorithmic procedure i) to study the ``distance'' between an integrable PDE and any discretization of it, in the small lattice spacing epsilon regime, and, at the same time, ii) to test the (asymptotic) integrability properties of such discretization. This method should provide, in particular, useful and concrete informations on how good is any numerical scheme used to integrate a given integrable PDE. The procedure, illustrated on a fairly general 10-parameter family of discretizations of the nonlinear Schroedinger equation, consists of the following three steps: i) the construction of the continuous multiscale expansion of a generic solution of the discrete system at all orders in epsilon, following the Degasperis - Manakov - Santini procedure; ii) the application, to such expansion, of the Degasperis - Procesi (DP) integrability test, to test the asymptotic integrability properties of the discrete system and its ``distance'' from its continuous limit; iii) the use of the main output of the DP test to construct infinitely many approximate symmetries and constants of motion of the discrete system, through novel and simple formulas.Comment: 34 pages, no figur

    Classification of discrete systems on a square lattice

    Full text link
    We consider the classification up to a Möbius transformation of real linearizable and integrable partial difference equations with dispersion defined on a square lattice by the multiscale reduction around their harmonic solution. We show that the A1, A2, and A3 linearizability and integrability conditions constrain the number of parameters in the equation, but these conditions are insufficient for a complete characterization of the subclass of multilinear equations on a square lattice

    Multiscale reduction of discrete nonlinear Schroedinger equations

    Full text link
    We use a discrete multiscale analysis to study the asymptotic integrability of differential-difference equations. In particular, we show that multiscale perturbation techniques provide an analytic tool to derive necessary integrability conditions for two well-known discretizations of the nonlinear Schroedinger equation.Comment: 12 page
    corecore